Чему равна кинетическая и потенциальная энергия. Кинетическая энергия и ее изменение — Гипермаркет знаний

Рассматриваемые вопросы:

Общие теоремы динамики механической системы. Кинетическая энергия: материальной точки, системы материальных точек, абсолютно твердого тела (при поступательном, вращательном и плоском движении). Теорема Кенига. Работа силы: элементарная работа сил, приложенных к твердому телу; на конечном перемещении, силы тяжести, силы трения скольжения, силы упругости. Элементарная работа момента силы. Мощность силы и пары сил. Теорема об изменении кинетической энергии материальной точки. Теорема об изменении кинетической энергии изменяемых и неизменяемых механических систем (дифференциальный и интегральный вид). Потенциальное силовое поле и его свойства. Эквипотенциальные поверхности. Потенциальная функция. Потенциальная энергия. Закон сохранения полной механической энергии.

5.1 Кинетическая энергия

а) материальной точки:

Определение: кинетической энергией материальной точки называется половина произведения массы этой точки на квадрат её скорости:

Кинетическая энергия является скалярной положительной величиной.

В системе СИ, единицей измерения энергии является джоуль:

1 дж = 1 Н?м.

б) системы материальных точек:

Кинетическая энергия системы материальных точек это сумма кинетических энергий всех точек системы:

(127)

в) абсолютно твердого тела:

1) при поступательном движении.

Скорости всех точек одинаковы и равны скорости центра масс, т.е. , тогда:

где М - масса тела.

Кинетическая энергия твердого тела, движущегося поступательно, равна половине произведения массы тела М на квадрат его скорости.

2) при вращательном движении.

Скорости точек определяются по формуле Эйлера:

(130)

Модуль скорости:

(131)

Кинетическая энергия тела при вращательном движении:

(133)

где: z - ось вращения.

Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси, равна половине произведения момента инерции этого тела относительно оси вращения на квадрат угловой скорости тела.

3) при плоском движении.

Скорость любой точки определяются через полюс:

(134)

Плоское движение состоит из поступательного движения со скоростью полюса и вращательного движения вокруг этого полюса, тогда кинетическая энергия складывается из энергии поступательного движения и энергии вращательного движения.

Кинетическая энергия через полюс «А» при плоском движении:

(135)

Лучше всего за полюс брать центр масс, тогда:

(136)

Это удобно потому, что моменты инерции относительно центра масс всегда известны.

Кинетическая энергия твердого тела при плоско-параллельном движении складывается из кинетической энергии поступательного движения вместе с центром масс и кинетической энергии от вращения вокруг неподвижной оси, проходящей через центр масс и перпендикулярной плоскости движения.


Часто бывает удобным брать за полюс мгновенный центр скоростей. Тогда:

(137)

Учитывая, что по определению мгновенного центра скоростей его скорость равна нулю, то .

Кинетическая энергия относительно мгновенного центра скоростей:

(138)

Необходимо помнить, что для определения момента инерции относительно мгновенного центра скоростей необходимо применять формулу Гюйгенса - Штейнера:

(139)

Эта формула бывает предпочтительнее в тех случаях, когда мгновенный центр скоростей находится на конце стержня.

4) Теорема Кенига.

Предположим, что механическая система вместе с системой координат, проходящей через центр масс системы, движется поступательно относительно неподвижной системы координат. Тогда, на основании теоремы о сложении скоростей при сложном движении точки, абсолютная скорость произвольной точки системы запишется как векторная сумма переносной и относительной скоростей:

(140)

где: - скорость начала подвижной системы координат (переносная скорость, т.е. скорость центра масс системы);

Скорость точки относительно подвижной системы координат (относительная скорость). Опуская промежуточные выкладки, получим:

(141)

Это равенство определяет теорему Кенига.

Формулировка: Кинетическая энергия системы равна сумме кинетической энергии, которую имела бы материальная точка, расположенная в центре масс системы и имеющая массу, равную массе системы, и кинетической энергии движения системы относительно центра масс.

5.2Работа силы.

Повседневный опыт показывает, что недвижимые тела можно привести в движение, а движимые остановить. Мы с вами постоянно что-то делаем, мир вокруг суетится, светит солнце... Но откуда у человека, животных, да и у природы в целом берутся силы для выполнения этой работы? Исчезает ли бесследно? Начнет ли двигаться одно тело без изменения движения другого? Обо всем этом мы расскажем в нашей статье.

Понятие энергии

Для работы двигателей, которые придают движение автомобилям, тракторам, тепловозам, самолетам, нужно топливо, которое является источником энергии. Электродвигатели придают движение станкам при помощи электроэнергии. За счет энергии воды, падающей с высоты, оборачиваются гидротурбины, соединенные с электрическими машинами, производящими электрический ток. Человеку для того, чтобы существовать и работать, также нужна энергия. Говорят, что для того, дабы выполнять какую-нибудь работу, необходима энергия. Что же такое энергия?

  • Наблюдение 1. Поднимем над землей мяч. Пока он пребывает в состоянии спокойствия, механическая работа не выполняется. Отпустим его. Под действием силы тяжести мяч падает на землю с определенной высоты. Во время падения мяча выполняется механическая работа.
  • Наблюдение 2. Сомкнем пружину, зафиксируем ее нитью и поставим на пружину гирьку. Подожжем нить, пружина распрямится и поднимет гирьку на некую высоту. Пружина выполнила механическую работу.
  • Наблюдение 3. На тележку закрепим стержень с блоком в конце. Через блок перекинем нить, один конец которой намотан на ось тележки, а на другом висит грузик. Отпустим грузик. Под действием он будет опускаться книзу и придаст тележке движение. Грузик выполнил механическую работу.

После анализа всех вышеперечисленных наблюдений можно сделать вывод, что если тело или несколько тел во время взаимодействия выполняют механическую работу, то говорят, что они имеют механическую энергию, либо энергию.

Понятие энергии

Энергия (от греч. слова энергия - деятельность) - это физическая величина, которая характеризирует способность тел выполнять работу. Единицей энергии, а также и работы в системе СИ является один Джоуль (1 Дж). На письме энергия обозначается буквой Е . Из вышеуказанных экспериментов видно, что тело выполняет работу тогда, когда переходит из одного состояния в другое. Энергия тела при этом меняется (уменьшается), а выполненная телом механическая работа равна результату изменения ее механической энергии.

Виды механической энергии. Понятие потенциальной энергии

Различают 2 вида механической энергии: потенциальную и кинетическую. Сейчас подробнее рассмотрим потенциальную энергию.

Потенциальная энергия (ПЭ) - определяющаяся взаимным положением тел, которые взаимодействуют, либо частями того самого тела. Поскольку любое тело и земля притягивают друг друга, то есть взаимодействуют, ПЭ тела, поднятого над землей, будет зависеть от высоты поднятия h . Чем выше поднято тело, тем больше его ПЭ. Экспериментально установлено, что ПЭ зависит не только от высоты, на которую оно поднято, но и от массы тела. Если тела были подняты на одинаковую высоту, то тело, имеющее большую массу, будет иметь и большую ПЭ. Формула данной энергии выглядит следующим образом: E п = mgh, где E п - это потенциальна энергия, m - масса тела, g = 9,81 Н/кг, h - высота.

Потенциальная энергия пружины

Потенциальной энергией упруго деформированного тела называют физическую величину E п, которая при изменении скорости поступательного движения под действием уменьшается ровно на столько, на сколько растет кинетическая энергия. Пружины (как и другие упруго деформированные тела) имеют такую ПЭ, которая равна половине произведения их жесткости k на квадрат деформации: x = kx 2: 2.

Энергия кинетическая: формула и определение

Иногда значение механической работы можно рассматривать без употребления понятий силы и перемещения, акцентировав внимание на том, что работа характеризует изменение энергии тела. Все, что нам может потребоваться, - это масса некоего тела и его начальная и конечная скорости, что приведет нас к кинетической энергии. Кинетическая энергия (КЭ) - это энергия, принадлежащая телу вследствие собственного движения.

Кинетическую энергию имеет ветер, ее используют для придания движения ветряным двигателям. Движимые оказывают давление на наклонные плоскости крыльев ветряных двигателей и заставляют их оборачиваться. Вращательное движение при помощи систем передач передается механизмам, выполняющим определенную работу. Движимая вода, оборачивающая турбины электростанции, теряет часть своей КЭ, выполняя работу. Летящий высоко в небе самолет, помимо ПЭ, имеет КЭ. Если тело пребывает в состоянии покоя, то есть его скорость относительно Земли равна нулю, то и его КЭ относительно Земли равна нулю. Экспериментально установлено, что чем больше масса тела и скорость, с которой оно движется, тем больше его КЭ. Формула кинетической энергии поступательного движения в математическом выражении следующая:

Где К - кинетическая энергия, m - масса тела, v - скорость.

Изменение кинетической энергии

Поскольку скорость движения тела является величиной, зависящей от выбора системы отсчета, значение КЭ тела также зависит от ее выбора. Изменение кинетической энергии (ИКЭ) тела происходит вследствие действия на тело внешней силы F . Физическую величину А , которая равна ИКЭ ΔЕ к тела вследствие действия на него силы F, называют работой: А = ΔЕ к. Если на тело, которое движется со скоростью v 1 , действует сила F , совпадающая с направлением, то скорость движения тела вырастет за промежуток времени t к некоторому значению v 2 . При этом ИКЭ равно:

Где m - масса тела; d - пройденный путь тела; V f1 = (V 2 - V 1); V f2 = (V 2 + V 1); a = F: m . Именно по этой формуле высчитывается, на сколько изменяется энергия кинетическая. Формула также может иметь следующую интерпретацию: ΔЕ к = Flcos , где cosά является углом между векторами силы F и скорости V .

Средняя кинетическая энергия

Кинетическая энергия представляет собой энергию, определяемую скоростью движения разных точек, которые принадлежат этой системе. Однако следует помнить, что необходимо различать 2 энергии, характеризующие разные поступательное и вращательное. (СКЭ) при этом является средней разностью между совокупностью энергий всей системы и ее энергией спокойствия, то есть, по сути, ее величина - это средняя величина потенциальной энергии. Формула средней кинетической энергии следующая:

где k - это константа Больцмана; Т - температура. Именно это уравнение является основой молекулярно-кинетической теории.

Средняя кинетическая энергия молекул газа

Многочисленными опытами было установлено, что средняя кинетическая энергия молекул газа в поступательном движении при заданной температуре одна и та же, и не зависит от рода газа. Кроме того, было установлено также, что при нагревании газа на 1 о С СКЭ увеличивается на одно и то же самое значение. Сказать точнее, это значение равно: ΔЕ к = 2,07 х 10 -23 Дж/ о С. Для того чтобы вычислить, чему равна средняя кинетическая энергия молекул газа в поступательном движении, необходимо, помимо этой относительной величины, знать еще хотя бы одно абсолютное значение энергии поступательного движения. В физике достаточно точно определены эти значения для широкого спектра температур. К примеру, при температуре t = 500 о С кинетическая энергия поступательного движения молекулы Ек = 1600 х 10 -23 Дж. Зная 2 величины (ΔЕ к и Е к), мы можем как вычислить энергию поступательного движения молекул при заданной температуре, так и решить обратную задачу - определить температуру по заданным значениям энергии.

Напоследок можно сделать вывод, что средняя кинетическая энергия молекул, формулакоторой приведена выше, зависит только от абсолютной температуры (причем для любого агрегатного состояния веществ).

Закон сохранения полной механической энергии

Изучение движения тел под действием силы тяжести и сил упругости показало, что существует некая физическая величина, которую называют потенциальной энергией Е п ; она зависит от координат тела, а ее изменение приравнивается ИКЭ, которая взята с противоположным знаком: Δ Е п = -ΔЕ к. Итак, сумма изменений КЭ и ПЭ тела, которые взаимодействуют с гравитационными силами и силами упругости, равна 0 : Δ Е п + ΔЕ к = 0. Силы, которые зависят только от координат тела, называют консервативными. Силы притяжения и упругости являются консервативными силами. Сумма кинетической и потенциальной энергий тела является полной механической энергией: Е п + Е к = Е.

Этот факт, который был доказан наиболее точными экспериментами,
называют законом сохранения механической энергии . Если тела взаимодействуют силами, которые зависят от скорости относительного движения, механическая энергия в системе взаимодействующих тел не сохраняется. Примером сил такого типа, которые называются неконсервативными , являются силы трения. Если на тело действуют силы трения, то для их преодоления необходимо затратить энергию, то есть ее часть используется на выполнение работы против сил трения. Однако нарушение закона сохранения энергии здесь только мнимое, потому что он является отдельным случаем общего закона сохранения и преобразования энергии. Энергия тел никогда не исчезает и не появляется вновь: она лишь преобразуется из одного вида в другой. Этот закон природы очень важен, он выполняется повсюду. Его еще иногда называют общим законом сохранения и преобразования энергии.

Связь между внутренней энергией тела, кинетической и потенциальной энергиями

Внутренняя энергия (U) тела - это его полная энергия тела за вычетом КЭ тела как целого и его ПЭ во внешнем поле сил. Из этого можно сделать вывод, что внутренняя энергия состоит из КЭ хаотического движения молекул, ПЭ взаимодействия между ними и внутремолекулярной энергии. Внутренняя энергия - это однозначная функция состояния системы, что говорит о следующем: если система находится в данном состоянии, ее внутренняя энергия принимает присущие ему значения, независимо от того, что происходило ранее.

Релятивизм

Когда скорость тела близка к скорости света, кинетическую энергию находят по следующей формуле:

Кинетическая энергия тела, формула которой была написана выше, может также рассчитываться по такому принципу:

Примеры задач по нахождению кинетической энергии

1. Сравните кинетическую энергию шарика массой 9 г, летящего со скоростью 300 м/с, и человека массой 60 кг, бегущего со скоростью 18 км/час.

Итак, что нам дано: m 1 = 0,009 кг; V 1 = 300 м/с; m 2 = 60 кг, V 2 = 5 м/с.

Решение:

  • Энергия кинетическая (формула): Е к = mv 2: 2.
  • Имеем все данные для расчета, а поэтому найдем Е к и для человека, и для шарика.
  • Е к1 = (0,009 кг х (300 м/с) 2) : 2 = 405 Дж;
  • Е к2 = (60 кг х (5 м/с) 2) : 2= 750 Дж.
  • Е к1 < Е к2.

Ответ: кинетическая энергия шарика меньше, чем человека.

2. Тело с массой 10 кг было поднято на высоту 10 м, после чего его отпустили. Какую КЭ оно будет иметь на высоте 5 м? Сопротивлением воздуха разрешается пренебречь.

Итак, что нам дано: m = 10 кг; h = 10 м; h 1 = 5 м; g = 9,81 Н/кг. Е к1 - ?

Решение:

  • Тело определенной массы, поднятое на некую высоту, имеет потенциальную энергию: E п = mgh. Если тело падает, то оно на некоторой высоте h 1 будет иметь пот. энергию E п = mgh 1 и кин. энергию Е к1. Чтобы была правильно найдена энергия кинетическая, формула, которая была приведена выше, не поможет, а поэтому решим задачу по нижеследующему алгоритму.
  • В этом шаге используем закон сохранения энергии и запишем: Е п1 + Е к1 = Е п.
  • Тогда Е к1 = Е п - Е п1 = mgh - mgh 1 = mg(h-h 1).
  • Подставив наши значения в формулу, получим: Е к1 = 10 х 9,81(10-5) = 490,5 Дж.

Ответ: Е к1 = 490,5 Дж.

3. Маховик, имеющий массу m и радиус R, оборачивается вокруг оси, проходящей через его центр. Угловая скорость оборачивания маховика - ω . Дабы остановить маховик, к его ободу прижимают тормозную колодку, действующей на него с силой F трения . Сколько оборотов сделает маховик до полной остановки? Учесть, что масса маховика сосредоточена по ободу.

Итак, что нам дано: m; R; ω; F трения. N - ?

Решение:

  • При решении задачи будем считать обороты маховика подобными оборотам тонкого однородного обруча с радиусом R и массой m, который оборачивается с угловой скоростью ω.
  • Кинетическая энергия такого тела равна: Е к = (Jω 2) : 2, где J = mR 2 .
  • Маховик остановится при условии, что вся его КЭ истратится на работу по преодолению силы трения F трения, возникающей между тормозной колодкой и ободом: Е к = F трения *s , где s - 2 πRN = (mR 2 ω 2) : 2, откуда N = (mω 2 R) : (4πF тр).

Ответ: N = (mω 2 R) : (4πF тр).

В заключение

Энергия - это важнейшая составляющая во всех аспектах жизни, ведь без нее никакие тела не смогли бы выполнять работу, в том числе и человек. Думаем, статья вам внятно дала понять, что собой представляет энергия, а развернутое изложение всех аспектов одной из ее составляющих - кинетической энергии - поможет вам осознать многие процессы, происходящих на нашей планете. А уж о том, как найти кинетическую энергию, вы можете узнать из приведенных выше формул и примеров решения задач.

Кинетическая и потенциальная энергии.

Кинетическая энергия тела является мерой его механического движения и определяется работой, которую необходимо совершить, чтобы вызвать данное движение тела. Если сила F действует на покоящееся тело и вызывает его движение со скоростью v, то она совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии тела, т. е. dA = dT.

Используя скалярную запись второго закона Ньютона F =mdv/dt и умножая обе части равенства на перемещение ds, получим

Так как

И

Таким образом, для тела массой т, движущегося со скоростью v, кинетическая энергия

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать закон Ньютона. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а, следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия - часть общей механической энергии системы, определяемая взаимным расположением тел и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного
положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такие силы называются диссипативными; примером их являются силы трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией П, которая определяется с точностью до некоторой произвольной постоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энергию какого-то определенного положения тела считают равной нулю (выбирают нулевой уровень отсчета), а энергию других положений отсчитывают относительно нулевого уровня.

Потенциальная энергия тела обычно определяется работой, которую совершили бы действующие на него внешние силы, преодолевающие консервативные силы взаимодействия, перемещая его из конечного состояния, где потенциальная энергия равна нулю, в данное положение. Работа консервативных сил, приложенных к телу, равна изменению потенциальной энергии этого тела, взятому с обратным знаком, т. е.

так как работа совершается за счет убыли потенциальной энергии.

Поскольку работа dA есть скалярное произведение силы F на перемещение dr, то выражение (12.2) можно записать в виде

Следовательно, если известна функция П(г), то (12.3) полностью определяет силу F по модулю и направлению. В случае консервативных сил

или в векторном виде

где символом grad П обозначена сумма

(12.5)

где i, j, k- единичные векторы координатных осей. Вектор, определяемый выражением (12.5), называется градиентом скаляра П. Для него наряду с обозначением grad П применяется также обозначение Ñ П. Ñ(«набла») означает символический вектор, называемый оператором Гамильтона или набла-оператором:

(12.6)

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна

, (12.7)

где h - высота, отсчитанная от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести: при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!). Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне тахты (глубина h"),

1. Камень, упав с некоторой высоты на Землю, оставляет на поверхности Земли вмятину. Во время падения он совершает работу по преодолению сопротивления воздуха, а после касания земли - работу по преодолению силы сопротивления почвы, поскольку обладает энергией. Если накачивать в закрытую пробкой банку воздух, то при некотором давлении воздуха пробка вылетит из банки, при этом воздух совершит работу по преодолению трения пробки о горло банки, благодаря тому, что воздух обладает энергией. Таким образом, тело может совершить работу, если оно обладает энергией. Энергию обозначают буквой ​\(E \) ​. Единица работы - ​\( \) ​ = 1 Дж.

При совершении работы изменяется состояние тела и изменяется его энергия. Изменение энергии равно совершенной работе: ​\(E=A \) ​.

2. Потенциальной энергией называют энергию взаимодействия тел или частей тела, зависящую от их взаимного положения.

Поскольку тела взаимодействуют с Землёй, то они обладают потенциальной энергия взаимодействия с Землёй.

Если тело массой ​\(m \) ​ падает с высоты ​\(h_1 \) ​ до высоты ​\(h_2 \) ​, то работа силы тяжести ​\(F_т \) ​ на участке ​\(h=h_1-h_2 \) ​ равна: ​\(A = F_тh = mgh = mg(h_1 — h_2) \) ​ или \(A = mgh_1 — mgh_2 \) (рис. 48).

В полученной формуле ​\(mgh_1 \) ​ характеризует начальное положение (состояние) тела, \(mgh_2 \) характеризует конечное положение (состояние) тела. Величина \(mgh_1=E_{п1} \) - потенциальная энергия тела в начальном состоянии; величина \(mgh_2=E_{п2} \) - потенциальная энергия тела в конечном состоянии.

Таким образом, работа силы тяжести равна изменению потенциальной энергии тела. Знак «–» означает, что при движении тела вниз и соответственно при совершении силой тяжести положительной работы потенциальная энергия тела уменьшается. Если тело поднимается вверх, то работа силы тяжести отрицательна, а потенциальная энергия тела увеличивается.

Если тело находится на некоторой высоте ​\(h \) ​ относительно поверхности Земли, то его потенциальная энергия в данном состоянии равна ​\(E_п=mgh \) ​. Значение потенциальной энергии зависит от того, относительно какого уровня она отсчитывается. Уровень, на котором потенциальная энергия равна нулю, называют нулевым уровнем .

В отличие от кинетической энергии потенциальной энергией обладают покоящиеся тела. Поскольку потенциальная энергия - это энергия взаимодействия, то она относится не к одному телу, а к системе взаимодействующих тел. В данном случае эту систему составляют Земля и поднятое над ней тело.

3. Потенциальной энергией обладают упруго деформированные тела. Предположим, что левый конец пружины закреплён, а к правому её концу прикреплён груз. Если пружину сжать, сместив правый её конец на ​\(x_1 \) ​, то в пружине возникнет сила упругости ​\(F_{упр1} \) ​, направленная вправо (рис. 49).

Если теперь предоставить пружину самой себе, то её правый конец переместится, удлинение пружины будет равно \(x_2 \) ​, а сила упругости \(F_{упр2} \) .

Работа силы упругости равна

\[ A=F_{ср}(x_1-x_2)=k/2(x_1+x_2)(x_1-x_2)=kx_1^2/2-kx_2^2/2 \]

​\(kx_1^2/2=E_{п1} \) ​ - потенциальная энергия пружины в начальном состоянии, \(kx_2^2/2=E_{п2} \) - потенциальная энергия пружины во конечном состоянии. Работа силы упругости равна изменению потенциальной энергии пружины.

Можно записать ​\(A=E_{п1}-E_{п2} \) ​, или \(A=-(E_{п2}-E_{п1}) \) , или \(A=-E_{п} \) .

Знак «–» показывает, что при растяжении и сжатии пружины сила упругости совершает отрицательную работу, потенциальная энергия пружины увеличивается, а при движении пружины к положению равновесия сила упругости совершает положительную работа, а потенциальная энергия уменьшается.

Если пружина деформирована и её витки смещены относительно положения равновесия на расстояние ​\(x \) ​, то потенциальная энергия пружины в данном состоянии равна ​\(E_п=kx^2/2 \) ​.

4. Движущиеся тела так же могут совершить работу. Например, движущийся поршень сжимает находящийся в цилиндре газ, движущийся снаряд пробивает мишень и т.п. Следовательно, движущиеся тела обладают энергией. Энергия, которой обладает движущееся тело, называется кинетической энергией . Кинетическая энергия ​\(E_к \) ​ зависит от массы тела и его скорости \(E_к=mv^2/2 \) . Это следует из преобразования формулы работы.

Работа ​\(A=FS \) ​. Сила ​\(F=ma \) ​. Подставив это выражение в формулу работы, получим ​\(A=maS \) ​. Так как ​\(2aS=v^2_2-v^2_1 \) ​, то ​\(A=m(v^2_2-v^2_1)/2 \) ​ или \(A=mv^2_2/2-mv^2_1/2 \) , где ​\(mv^2_1/2=E_{к1} \) ​ - кинетическая энергия тела в первом состоянии, \(mv^2_2/2=E_{к2} \) - кинетическая энергия тела во втором состоянии. Таким образом, работа силы равна изменению кинетической энергии тела: ​\(A=E_{к2}-E_{к1} \) ​, или ​\(A=E_к \) ​. Это утверждение - теорема о кинетической энергии .

Если сила совершает положительную работу, то кинетическая энергия тела увеличивается, если работа силы отрицательная, то кинетическая энергия тела уменьшается.

5. Полная механическая энергия ​\(E \) ​ тела - физическая величина, равная сумме его потенциальной ​\(E_п \) ​ и кинетической \(E_п \) энергии: \(E=E_п+E_к \) .

Пусть тело падает вертикально вниз и в точке А находится на высоте ​\(h_1 \) ​ относительно поверхности Земли и имеет скорость ​\(v_1 \) ​ (рис. 50). В точке В высота тела \(h_2 \) и скорость \(v_2 \) Соответственно в точке А тело обладает потенциальной энергией ​\(E_{п1} \) ​ и кинетической энергией \(E_{к1} \) , а в точке В - потенциальной энергией \(E_{п2} \) и кинетической энергией \(E_{к2} \) .

При перемещении тела из точки А в точку В сила тяжести совершает работу, равную А. Как было показано, ​\(A=-(E_{п2}-E_{п1}) \) ​, а также \(A=E_{к2}-E_{к1} \) . Приравняв правые части этих равенств, получаем: ​\(-(E_{п2}-E_{п1})=E_{к2}-E_{к1} \) ​, откуда \(E_{к1}+E_{п1}=E_{п2}+E_{к2} \) или ​\(E_1=E_2 \) ​.

Это равенство выражает закон сохранения механической энергии: полная механическая энергия замкнутой системы тел, между которыми действуют консервативные силы (силы тяготения или упругости) сохраняется .

В реальных системах действуют силы трения, которые не являются консервативными, поэтому в таких системах полная механическая энергия не сохраняется, она превращается во внутреннюю энергию.

Часть 1

1. Два тела находятся на одной и той же высоте над поверхностью Земли. Масса одного тела ​\(m_1 \) ​ в три раза больше массы другого тела ​\(m_2 \) ​. Относительно поверхности Земли потенциальная энергия

1) первого тела в 3 раза больше потенциальной энергии второго тела
2) второго тела в 3 раза больше потенциальной энергии первого тела
3) первого тела в 9 раз больше потенциальной энергии второго тела
4) второго тела в 9 раз больше потенциальной энергии первого тела

2. Сравните потенциальную энергию мяча на полюсе ​\(E_п \) ​ Земли и на широте Москвы ​\(E_м \) ​, если он находится на одинаковой высоте относительно поверхности Земли.

1) ​\(E_п=E_м \) ​
2) \(E_п>E_м \)
3) \(E_п 4) \(E_п\geq E_м \)

3. Тело брошено вертикально вверх. Его потенциальная энергия

1) одинакова в любые моменты движения тела
2) максимальна в момент начала движения
3) максимальна в верхней точке траектории
4) минимальна в верхней точке траектории

4. Как изменится потенциальная энергия пружины, если её удлинение уменьшить в 4 раза?

1) увеличится в 4 раза
2) увеличится в 16 раз
3) уменьшится в 4 раза
4) уменьшится в 16 раз

5. Лежащее на столе высотой 1 м яблоко массой 150 г подняли относительно стола на 10 см. Чему стала равной потенциальная энергия яблока относительно пола?

1) 0,15 Дж
2) 0,165 Дж
3) 1,5 Дж
4) 1,65 Дж

6. Скорость движущегося тела уменьшилась в 4 раза. При этом его кинетическая энергия

1) увеличилась в 16 раз
2) уменьшилась в 16 раз
3) увеличилась в 4 раза
4) уменьшилась в 4 раза

7. Два тела движутся с одинаковыми скоростями. Масса второго тела в 3 раза больше массы первого. При этом кинетическая энергия второго тела

1) больше в 9 раз
2) меньше в 9 раз
3) больше в 3 раза
4) меньше в 3 раза

8. Тело падает на пол с поверхности демонстрационного стола учителя. (Сопротивление воздуха не учитывать.) Кинетическая энергия тела

1) минимальна в момент достижения поверхности пола
2) минимальна в момент начала движения
3) одинакова в любые моменты движения тела
4) максимальна в момент начала движения

9. Книга, упавшая со стола на пол, обладала в момент касания пола кинетической энергией 2,4 Дж. Высота стола 1,2 м. Чему равна масса книги? Сопротивлением воздуха пренебречь.

1) 0,2 кг
2) 0,288 кг
3) 2,0 кг
4) 2,28 кг

10. С какой скоростью следует бросить тело массой 200 г с поверхности Земли вертикально вверх, чтобы его потенциальная энергия в наивысшей точке движения была равна 0,9 Дж? Сопротивлением воздуха пренебречь. Потенциальную энергию тела отсчитывать от поверхности земли.

1) 0,9 м/с
2) 3,0 м/с
3) 4,5 м/с
4) 9,0 м/с

11. Установите соответствие между физической величиной (левый столбец) и формулой, по которой она вычисляется (правый столбец). В ответе запишите подряд номера выбранных ответов

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Потенциальная энергия взаимодействия тела с Землёй
Б. Кинетическая энергия
B. Потенциальная энергия упругой деформации

ХАРАКТЕР ИЗМЕНЕНИЯ ЭНЕРГИИ
1) ​\(E=mv^2/2 \) ​
2) \(E=kx^2/2 \) ​
3) \(E=mgh \) ​

12. Мяч бросили вертикально вверх. Установите соответствие между энергией мяча (левый столбец) и характером её изменения (правый столбец) при растяжении пружины динамометра. В ответе запишите подряд номера выбранных ответов.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Потенциальная энергия
Б. Кинетическая энергия
B. Полная механическая энергия

ХАРАКТЕР ИЗМЕНЕНИЯ ЭНЕРГИИ
1) Уменьшается
2) Увеличивается
3) Не изменяется

Часть 2

13. Пуля массой 10 г, движущаяся со скоростью 700 м/с, пробила доску толщиной 2,5 см и при выходе из доски имела скорость 300 м/с. Определить среднюю силу сопротивления, воздействующую на пулю в доске.

Ответы

Похожие публикации