Относительная сходимость. Знакопеременные ряды, абсолютная и условная сходимость

Числовой ряд, члены которого имеют произвольные знаки (+), (?), называется знакопеременным рядом. Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд? знакопеременный, но не являющийся знакочередующимся рядом.

Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (?) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот.

Определение 1. Если числовой ряд сходится и его сумма равна S, а частичная сумма равна S n , то называется остатком ряда, причём, т.е. остаток сходящегося ряда стремится к 0.

Рассмотрим сходящийся знакочередующийся ряд как частный случай знакопеременного ряда

где. Запишем его в виде, тогда по признаку Лейбница; так как, то, т.е. остаток сходящегося ряда стремится к 0.

Для знакопеременных рядов вводятся понятия абсолютной и условной сходимости.

Определение 2. Ряд называется сходящимся абсолютно, если сходится ряд, составленный из абсолютных величин его членов.

Определение 3. Если числовой ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно) сходящимся.

Теорема 2 (достаточный признак сходимости знакопеременных рядов). Знакопеременный ряд сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов.

Доказательство. Обозначим через частичную сумму ряда: , а через? частичную сумму ряда: . Обозначим через сумму всех положительных членов, а через сумму абсолютных величин всех отрицательных членов, входящих в. Очевидно, что.

По условию теоремы ряд сходится, тогда существует, и так как последовательность? монотонно возрастающая и неотрицательная, то. Очевидно, что, тогда последовательности и являются монотонно возрастающими и ограниченными, причем их пределы равны и. Тогда. Значит, исходный знакопеременный ряд сходится и сходится абсолютно. Теорема доказана.

Замечание. Теорема 2 даёт только достаточное условие сходимости знакопеременных рядов. Обратная теорема неверна, т.е. если знакопеременный ряд сходится, то не обязательно, что сходится ряд, составленный из модулей (он может быть как сходящимся, так и расходящимся). Например, ряд сходится по признаку Лейбница (см. пример 1 данной лекции), а ряд, составленный из абсолютных величин его членов, (гармонический ряд) расходится.

Пример 2. Исследовать на условную и абсолютную сходимость ряд.

Решение. Данный ряд является знакопеременным, общий член которого обозначим: . Составим ряд из абсолютных величин и применим к нему признак Даламбера. Составим предел, где, . Проведя преобразования, получаем. Таким образом, ряд сходится, а значит, исходный знакопеременный ряд сходится абсолютно. Ответ: ряд абсолютно сходится.

Пример 3. Исследовать на абсолютную и условную сходимость ряд.

Решение. А) Исследуем ряд на абсолютную сходимость. Обозначим и составим ряд из абсолютных величин. Получаем ряд с положительными членами, к которому применяем предельный признак сравнения рядов (теорема 2, лекция 2, разд. 2.2). Для сравнения с рядом рассмотрим ряд, который имеет вид. Этот ряд является рядом Дирихле с показателем, т.е. он расходится. Составим и вычислим следующий предел. Так как предел существует, не равен 0 и не равен?, то оба ряда и ведут себя одинаково. Таким образом, ряд расходится, а значит, исходный ряд не является абсолютно сходящимся.

Б) Далее исследуем исходный ряд на условную сходимость. Для этого проверим выполнение условий признака Лейбница (теорема 1, разд. 3.1). Условие 1): , где, т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию, определенную при (функция такова, что при имеем). Для исследования этой функции на монотонность найдём её производную: . Эта производная при. Следовательно, функция монотонно убывает при указанных значениях х. Полагая, получаем, где. Это означает, чтоусловие 2) выполнено. Для проверки условия 3) находим предел общего члена: , т.е. третье условие выполняется. Таким образом, для исходного ряда выполнены все условия признака Лейбница, т.е. он сходится.

Ответ: ряд условно сходится.

Свойства абсолютно и условно сходящихся рядов

Свойство 1. Если ряд абсолютно сходится, то он абсолютно сходится при любой перестановке его членов, при этом сумма ряда не зависит от порядка расположения членов. Если? сумма всех его положительных членов, а? сумма всех абсолютных величин отрицательных членов, то сумма ряда равна.

Свойство 2. Если ряд абсолютно сходится и, то ряд также абсолютно сходится.

Свойство 3. Если ряды и абсолютно сходятся, то ряды также абсолютно сходятся.

Свойство 4 (теорема Римана). Если ряд условно сходится, то какое бы мы не взяли число А, можно переставить члены данного ряда так, чтобы его сумма оказалась в точности равной А; более того, можно так переставить члены условно сходящегося ряда, чтобы после этого он расходился.

Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным.

Абсолютная и условная сходимость

Ряд называется абсолютно сходящимся, если ряд также сходится.

Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Исследовать на сходимость ряд .

Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем

поскольку . Следовательно, данный ряд сходится.

38. Знакочередующиеся ряды. Признак Лейбница.

Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки.

Признак Лейбница

Для знакочередующихся рядом действует достаточный признак сходимости Лейбница.

Пусть {an} является числовой последовательностью, такой, что

1. an+1 < an для всех n;

Тогда знакочередующиеся ряды исходятся.

39. Функциональные ряды. Степенные ряды. Радиус сходимости. Интервал сходимости.

Понятие функционального ряда и степенного ряда

Обычный числовой ряд, вспоминаем, состоит из чисел:

Все члены ряда –это ЧИСЛА.

Функциональный же ряд состоит из ФУНКЦИЙ:

В общий член рядапомимо многочленов, факториалов и других подарков непременно входит буковка «икс». Выглядит это, например, так:

Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:

Как видите, все члены функционального ряда это функции.

Наиболее популярной разновидностью функционального ряда является степенной ряд.

Определение:

Степенной ряд – это ряд, в общий член которого входят целые положительные степени независимой переменной.

Упрощенно степенной ряд во многих учебниках записывают так: , где– это старая знакомая «начинка» числовых рядов (многочлены, степени, факториалы, зависящие только от «эн»). Простейший пример:

Посмотрим на это разложение и еще раз осмыслим определение: члены степенного ряда содержат «иксы» в целых положительных (натуральных) степенях.

Очень часто степенной ряд можно встретить в следующих «модификациях»: илигде а – константа. Например:

Строго говоря, упрощенные записи степенного ряда,илине совсем корректны. В показателе степени вместо одинокой буквы «эн» может располагаться более сложное выражение, например:

Или такой степенной ряд:

Лишь бы показатели степеней при «иксАх» были натуральными.

Сходимость степенного ряда .

Интервал сходимости, радиус сходимости и область сходимости

Не нужно пугаться такого обилия терминов, они идут «рядом друг с другом» и не представляют особых сложностей для понимания. Лучше выберем какой-нибудь простой подопытный ряд и сразу начнём разбираться.

Прошу любить и жаловать степенной ряд Переменная может принимать любое действительное значение от «минус бесконечности» до «плюс бесконечности». Подставим в общий член ряда несколько произвольных значений «икс»:

Если х=1,то

Если х=-1,то

Знакочередующийся ряд является частным случаем знакопеременного ряда.

Определение 2.2. Числовой ряд , члены которого после любого номера имеют разные знаки, называется знакопеременным .

Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости .

Теорема 2.2. Пусть дан знакопеременный ряд

Если сходится ряд, составленный из модулей членов данного ряда

то сходится и сам знакопеременный ряд (2.2).

Надо отметить, что обратное утверждение неверно: если сходится ряд (2.2), то это не означает, что будет сходиться ряд (2.3).

Определение 2.3. абсолютно сходящимся , если ряд, составленный из модулей его членов, сходится.

Знакопеременный ряд называется условно сходящимся , если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Среди знакопеременных рядов абсолютно сходящиеся ряды занимают особое место. Такие ряды обладают рядом свойств, которые сформулируем без доказательства.

Произведение двух абсолютно сходящихся рядов с суммами и есть абсолютно сходящийся ряд, сумма которого равна .

Таким образом, абсолютно сходящиеся ряды суммируются, вычитаются, перемножаются как обычные ряды. Суммы таких рядов не зависит от порядка записи членов.

В случае условно сходящихся рядов соответствующие утверждения (свойства), вообще говоря, не имеют места.

Так, переставляя члены условно сходящегося ряда, можно добиться того, что сумма ряда измениться. Например, ряд условно сходится по признаку Лейбница. Пусть сумма этого ряда равна . Перепишем его члены так, что после одного положительного члена будут идти два отрицательных. Получим ряд

Сумма уменьшилась вдвое!

Более того, путем перестановки членов условно сходящегося ряда можно получить сходящийся ряд с заранее заданной суммой или расходящийся ряд (теорема Римана).

Поэтому действия над рядами нельзя производить, не убедившись в их абсолютной сходимости. Для установления абсолютной сходимости используют все признаки сходимости числовых рядов с положительными членами, заменяя всюду общий член его модулем.

Пример 2.1. .

Решение. Исходный ряд знакопеременный. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда, т.е. ряд . Так как , то члены сходного ряда не больше членов ряда Дирихле , который, как известно, сходится. Следовательно, на основании признака сравнения данный ряд сходится абсолютно. ,

Пример 2.2. Исследовать на сходимость ряд .

Решение.

2) Рассмотрим ряд, составленный из абсолютных членов . Исследуем его на сходимость, используя признак Даламбера

По признаку Даламбера ряд, составленный из абсолютных членов, сходится. Значит, исходный знакочередующийся ряд сходится абсолютно. ,

Пример 2.3. Исследовать на сходимость ряд .

Решение. 1) Данный ряд знакочередующийся. Используем признак Лейбница. Проверим, выполняются ли условия.

Следовательно, исходный ряд сходится.

2) Рассмотрим ряд, составленный из абсолютных членов . Исследуем его на сходимость, используя предельный признак сравнения. Рассмотрим гармонический ряд , который расходится.

Следовательно, оба ряда ведут себя одинаково, т.е. ряд, составленный из абсолютных членов, тоже расходится. Значит, исходный знакочередующийся ряд сходится условно. ,

Теорема. Пусть - непрерывная, неотрицательная, монотонно убывающая функция, определенная при . Тогда ряд и интеграл либо оба сходятся, либо оба расходятся.

Доказательство. Ввиду монотонности при всех выполняются неравенства . Интегрируя, получаем . Тогда , или . Поэтому если сходится, то . Тогда и , ряд сходится.

Пусть теперь наоборот, известно, что ряд сходится. Тогда . Взяв произвольное выберем так, чтобы . Тогда . Значит, сходится.

Абсолютная сходимость. Свойства абсолютно сходящихся рядов

Определение. Абсолютно сходящимся рядом называется сходящийся ряд , для которого сходится и ряд .

Легко доказать, что из сходимости ряда вытекает сходимость ряда . По критерию Коши, примененному к , получаем: . Из полученного неравенства следует, что и для исходного ряда также выполнен критерий Коши, следовательно он сходится.

Обозначим , т.е. , . Очевидны равенства: . Рассмотрим ряды и . Если они сходятся, то сходится и ряд , т.е. ряд абсолютно сходится. Если же сходятся ряды , то, т.к. , ряды и тоже сходятся. Таким образом, для абсолютной сходимости необходима и достаточна сходимость рядов и .

(признак Лейбница).

Если члены знакочередующегося ряда (9.4.1), будучи взяты по модулю, образуют не возрастающую бесконечно малую последовательность, т.е. и, то этот рядсходится .

Приведем примеры знакочередующихся рядов.

Исследовать сходимость ряда .

Этот ряд сходится по признаку Лейбница, так как его члены убывают по абсолютной величине и при.

Исследовать сходимость ряда .

Нетрудно убедиться, что данный ряд удовлетворяет условиям Теоремы 1 и потому сходится .

Замечание. В теореме Лейбница существенно не только условие , но и условие. Так, например, для рядавторое условие нарушено и, хотя, ряд расходится. Это видно, если данный ряд представить в виде, т.е. удвоенного гармонического ряда.

Под знакопеременным рядом будем понимать ряд, в котором любой его член может быть как положительным , так и отрицательным .

Рассмотрим случай ряда с членами, имеющими произвольные знаки:

. (9.4.2)

Одновременно рассмотрим ряд

, (9.4.3)

где - члены ряда (9.4.2).

(достаточный признак сходимости знакопеременного ряда). Из сходимости ряда (9.4.3) следует сходимость ряда (9.4.2).

Признак Даламбера сходимости знакоположительного ряда

Пусть дан знакоположительный ряд и существует
. Тогда, еслиq < 1, то ряд сходится; если q > 1, то ряд расходится.

Доказательство: 1) пусть q < 1, докажем, что ряд сходится. Поскольку существует предел
, можно записать
или
a n (q - ) < a n +1 < a n (q + ). Выберем  таким образом, чтобы q +  < 1. Из полученного двойного неравенства и неравенства q +  < 1 следует, что

a N +2 < (q + ) a N +1 ;

a N +3 < (q + ) a N +2 < (q + ) 2 a N +1 ;

a N +4 < (q + ) a N +3 < (q + ) 3 a N +2 < (q + ) 3 a N +1 .

Итак, члены ряда a N +2 + a N +3 + a N +4 +… меньше соответствующих членов бесконечной геометрической прогрессии a N +1 (q + ) + a N +2 (q + ) 2 + a N +3 (q + ) 3 +… Знаменатель прогрессии меньше единицы, поэтому прогрессия представляет собой сходящийся ряд (см. №1). По признаку сравнения, ряд также является сходящимся.

2) Пусть теперь q > 1. Возьмем такое число , что q -  будет также больше единицы. Тогда для достаточно больших n, на основании выведенного в пункте 1) данного доказательства двойного неравенства, мы будем иметь

Отсюда a N < a N +1 < a N +2 . Следовательно члены ряда возрастают при увеличении их номера, не выполняется необходимый признак сходимости. Поэтому рядрасходится. Теорема полностью доказана.

Если q = 1, то нельзя определить характер сходимости ряда. Например, ряд сходится, а рядрасходится.

Знакочередующиеся ряды. Признак сходимости Лейбница. Понятие об абсолютно и условно сходящихся рядах

Знакочередующиеся ряды. Признак сходимости Лейбница. Знакочередующийся ряд – ряд, у которого любые рядом стоящие члены имеют противоположные знаки.

Признак сходимости Лейбница : если абсолютные величины членов знакочередующегося ряда монотонно убывают при возрастании их номера и n-й член ряда при неограниченном возрастании n стремится к нулю, т.е.

,

то этот ряд сходится.

Доказательство: возьмем сумму S 2 m первых членов ряда и запишем ее следующим образом:

S 2m = (a 1 – a 2) + (a 3 + a 4) +…+ (a 2m-1 + a 2m).

Так как разности, стоящие в скобках, на основании условия монотонности убывания абсолютных величин членов ряда, положительны, то

Если 2m возрастает, то S 2 m не убывает, т.к. каждый раз прибавляются положительные или равные нулю слагаемые.

С другой стороны ту же сумму можно представить в виде:

S 2m = a 1 – (a 2 – a 3) – (a 4 – a 5) -…- (a 2m-2 – a 2m-1) – a 2m .

В скобках стоят положительные числа, поэтому

S 2 m a 1 .

Следовательно, S 2 m , будучи монотонно возрастающей (точнее, не убывающей) и ограниченной последовательностью, имеет при m   конечный предел S:

.

Но очевидно, что

S 2 m +1 = S 2 m + а 2 m +1 .

На основании условия о стремлении n-го члена к нулю, имеем также

.

Таким образом, получаем

Мы получили, что при неограниченном возрастании n частные суммы S n стремятся к одному и тому же пределу S, независимо от того, будет ли n четное или нечетное. Поэтому ряд сходится.

Понятие об абсолютно и условно сходящихся рядах. Ряд, состоящий из членов разных знаков, называется знакопеременным . Знакопеременный ряд называется абсолютно сходящимся , если сходится как сам ряд, так и ряд, составленный из абсолютных величин его членов. Ряд называется условно сходящимся , если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Теорема: если для знакопеременного ряда сходится ряд, составленный их абсолютных величин его членов, то данный ряд также сходится.

Доказательство: рассмотрим вспомогательный ряд

Так как 1) 0
и 2) ряд
в силу заданной по условию сходимости рядатакже сходится, то на основании признака сравнения и рассматриваемый вспомогательный ряд сходится. Поэтому наш рядпредставляет собой разность двух сходящихся рядов

=

и, следовательно, сходится, ч. т. д. Обратное утверждение не верно.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при
и расходится при
.

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1:
ряд сходится по признаку Лейбница (см. Признак Лейбница.).

При х = -1:
ряд расходится (гармонический ряд).

Теоремы Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд
сходится при
x = x 1 , то он сходится и притом абсолютно для всех
.

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k - некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x < x 1 численные величины членов нашего ряда будут меньше (во всяком случае не больше) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд
сходится, а значит ряд
сходится абсолютно.

Таким образом, если степенной ряд
сходится в точкех 1 , то он абсолютно сходится в любой точке интервала длины 2с центром в точкех = 0.

Следствие. Если при х = х 1 ряд расходится, то он расходится для всех
.

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что
ряд абсолютно сходится, а при всех
ряд расходится. При этом числоR называется радиусом сходимости . Интервал (-R, R) называется интервалом сходимости .

Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.

Радиус сходимости может быть найден по формуле:

Пример. Найти область сходимости ряда

Находим радиус сходимости
.

Следовательно, данный ряд сходится прилюбом значении х . Общий член этого ряда стремится к нулю.

Теорема. Если степенной ряд
сходится для положительного значениях=х 1 , то он сходится равномерно в любом промежутке внутри
.

Действия со степенными рядами.

Ряд называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные.

Рассмотренные в предыдущем параграфе знакочередующиеся ряды являются, очевидно, частным случаем знакопеременных рядов.

Мы рассмотрим здесь некоторые свойства знакопеременных рядов. При этом в отличие от соглашения, принятого в предыдущем параграфе, мы будем теперь полагать, что числа могут быть как положительными, так и отрицательными.

Прежде всего, дадим один важный достаточный признак сходимости зракопеременного ряда.

Теорема 1. Если знакопеременный ряд

таков, что ряд, составленный из абсолютных величин его членов,

сходится, то и данный знакопеременный ряд также сходится.

Доказательство. Пусть - суммы первых членов рядов (1) и (2).

По условию, имеет предел и - положительные возрастающие величины, меньшие а. Следовательно, они имеют пределы Из соотношения следует, что и имеет предел и этот предел равен , т. е. знакопеременный ряд (1) сходится.

Доказанная теорема дает возможность судить о сходимости некоторых знакопеременных рядов. Исследование вопроса о сходимости знакопеременного ряда сводится в этом случае к исследованию ряда с положительными членами.

Рассмотрим два примера.

Пример 1. Исследовать сходимость ряда

где а - любое число.

Решение. Наряду с данным рядом, рассмотрим ряды

Ряд (5) сходится (см. § 6). Члены ряда (4) не больше соответственных членов ряда (5); следовательно, ряд (4) тоже сходится. Но тогда в силу доказанной теоремы данный знакопеременный ряд (3) тоже сходится.

Пример 2. Исследовать сходимость ряда

Решение. Наряду с данным рядом, рассмотрим ряд

Этот ряд сходится, так как он является убывающей геометрической прогрессией со знаменателем 1/3. Но тогда сходится и заданный ряд (6), так как абсолютные величины его членов меньше соответствующих членов ряда (7).

Заметим, что признак сходимости, доказанной выше, является только достаточным признаком сходимости знакочередующегося ряда, но не необходимым: существуют такие знакопеременные ряды, которые сами сходятся, но ряды, составленные из абсолютных величин их членов, расходятся. В связи с этим полезно ввести понятия об абсолютной и условной сходимости. знакопеременного ряда и на основе этих понятий классифицировать знакопеременные ряды.

Определение. Знакопеременный ряд

называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов:

Если же знакопеременный ряд (1) сходится, а ряд (2), составленный из абсолютных величин его членов, расходится, то данный знакопеременный ряд (1) называется условно или неабсолютно сходящимся рядом.

Пример 3. Знакопеременный ряд является условно сходящимся, так как ряд, составленный из абсолютных величин его членов, есть гармонический ряд который расходится. Сам же ряд сходится, что легко проверить с помощью признака Лейбница.

Пример 4. Знакопеременный ряд есть ряд абсолютно сходящийся, так как ряд, составленный из абсолютных величин его членов сходится, как это было установлено в § 4.

С помощью понятия абсолютной сходимости теорему 1 часто формулируют следующим образом: всякий абсолютно сходящийся ряд есть ряд сходящийся.

В заключение отметим (без доказательства) следующие свойства абсолютно сходящихся и условно сходящихся рядов.

Теорема 2. Если ряд сходится абсолютно, то он остается абсолютно сходящимся при любой перестановке его членов. При этом сумма ряда не зависит от порядка его членов.

Это свойство не сохраняется для условно сходящихся рядов. Теорема 3. Если ряд сходится условно, то, какое бы мы ни задали число А, можно так переставить члены этого ряда, чтобы его сумма оказалась в точности равной А. Более того, - можно так переставить члены условно сходящегося ряда, чтобы ряд, полученный после перестановки, оказался расходящимся.

Доказательство эти теорем выходит за рамки данного курса. Его можно найти в более подробных учебниках (см., например, Фнхтенгольц Г. М. Курс дифференциального и интегрального исчисления, т. II. - М.: Физматгиз, 1962, с. 319-320).

Похожие публикации