Пирамида - развертка. Развертка пирамиды для склеивания

Допустим, что многогранник - многогранную поверхность - после проведения разрезов по нескольким ребрам удается развернуть на плоскость. В результате получается развертка многогранника. Развертка представляет собой плоский многоугольник, составленный из меньших многоугольников - граней исходного многогранника. Так, на рис. 1 изображены развертки всех пяти видов правильных многогранников. По ним легко восстановить, склеить соответствующие многогранники; обычно на развертках указывают, какие именно пары сторон развертки нужно склеивать для получения исходного многогранника.

Один и тот же многогранник может иметь несколько разных разверток. Например, правильный тетраэдр имеет и треугольную развертку, которая даже более удобна для склейки тетраэдра: достаточно согнуть три угловых треугольника (рис. 2). Аналогичная развертка произвольного тетраэдра представляет собой в общем случае шестиугольник с попарно равными соседними сторонами (рис. 3).

Развертки (или части разверток) применяют при изготовлении моделей различных многогранников. Пример-склейка «треугольных» (правильнее говорить «тетраэдрических») молочных пакетов. Эти пакеты не являются правильными тетраэдрами: правильные тетраэдры плохо укладываются в молочные корзины. Молочные пакеты представляют собой равногранные тетраэдры с четырьмя ребрами примерно по 17 см и двумя ребрами по 13 см. Внимательно рассмотрев пакет, вы увидите, что он склеен из... прямоугольника, получающеюся при разрезании тетраэдра по двум меньшим ребрам и большей высоте одной из граней. Легко представить обратную процедуру: как показано на рис. 4, сначала прямоугольник склеивается в цилиндр (точнее, в боковую поверхность цилиндра), а потом вдоль взаимно перпендикулярных диаметров оснований в тетраэдрический пакет. Конечно, технологически это осуществить проще, чем склейку пакета из треугольника, - не потребуется даже никаких клапанов для склейки.

«Он же, не смутясь нимало.
Развернул пазы и петли.
Стал вертеть их так и эдак,
Пока все вдруг не предстало
В виде плоскостей, квадратов,
Точно сложная фигура
Из Эвклидова трактата».
Л. Кэррол

Развертки помогают решать задачи на отыскание кратчайшего пути (по поверхности фигуры) из одной точки в другую. Например, чтобы из всех путей вида , ведущих по поверхности куба из вершины в противолежащую вершину (рис. 5,а), выбрать кратчайший, достаточно развернуть две соседние грани и соединить точки и отрезком прямой (рис. 5,б). Кратчайший путь будет проходить через середину ребра (всего таких путей будет 6 - по числу разделяющих точки и ребер куба). Обратите внимание: точно так же решается и задача о кратчайшем «перевале» через ребро любого двугранного угла (рис. 6).

Рассматривая молочный пакет, мы видели, что цилиндрическую поверхность тоже можно развернуть на плоскость. Это верно и для поверхности конуса: разрезав ее по окружности основания и по одной из образующих, после разворачивания мы получим (касающиеся друг друга) круг и круговой сектор (рис. 7,а,б). Если кривая на поверхности не пересекает линии разреза, то ее длина при разворачивании не меняется. Поэтому и в случае цилиндра и конуса развертку можно применить для отыскания кратчайшего пути из точки в точку , идущего по боковой поверхности конуса или цилиндра. Конечно, при этом следует позаботиться о выборе линии, по которой делать разрез, иначе можно получить не самый короткий путь, а лишь более короткий по сравнению с ближайшими путями (пунктир на рис. 7, а).

Развертки цилиндра и конуса можно использовать и для вычисления площадей их боковых поверхностей ( - для цилиндра и - для конуса). Однако этот метод определения площадей далек от универсальности, ибо большинство искривленных поверхностей нельзя развернуть на плоскость с сохранением длин и площадей. С этим, в частности, связаны трудности при изготовлении покрышек для мячей.

Большой выбор развёрток простых геометрических фигур.

Первое знакомство детей с бумажным моделированием всегда начинается с простых геометрических фигур, таких как кубик и пирамида. Не у многих получается склеить кубик с первого раза, иногда требуется несколько дней, чтобы сделать поистине ровный и безупречный куб. Более сложные фигуры цилиндр и конус требуют в несколько раз больше усилий нежели простой кубик. Если вы не умеете аккуратно клеить геометрические фигуры, значит и за сложные модели вам ещё рано браться. Займитесь сами и научите своих детей клеть эти «азы» моделирования по готовым развёрткам.

Для начала я, конечно же, предлагаю научиться клеить обычный кубик. Развёртки сделаны для двух кубиков, большого и маленького. Более сложной фигурой является маленький кубик потому, как клеить его сложнее, чем большой.

Итак, начнём! Скачайте развёртки всех фигур на пяти листах и распечатайте на плотной бумаге. Перед тем, как печатать и клеить геометрические фигуры обязательно ознакомьтесь со статьёй о том, как выбрать бумагу и как вообще правильно вырезать, сгибать и клеить бумагу.

Для более качественной печати советую использовать программу AutoCAD, и даю вам развёртки для этой программы , а также читайте, как распечатывать из автокада . Вырежьте развёртки кубиков с первого листа, по линиям сгиба обязательно проведите иголкой циркуля под железную линейку, чтобы бумага хорошо сгибалась. Теперь можно начинать клеить кубики.

Для экономии бумаги и на всякий пожарный я сделал несколько развёрток маленького кубика, мало ли вам захочется склеить не один кубик или что-то не получится с первого раза. Ещё одна несложная фигура это пирамида, её развёртки найдёте на втором листе. Подобные пирамиды стоили древние египтяне, правда не из бумаги и не таких маленьких размеров:)

А это тоже пирамида, только в отличие от предыдущей у неё не четыре, а три грани.

Развёртки трёхгранной пирамиды на первом листе для печати.

И ещё одна забавная пирамидка из пяти граней, её развёртки на 4-ом листе в виде звёздочки в двух экземплярах.

Более сложная фигура это пятигранник, хотя пятигранник сложнее начертить, нежели склеить.

Развёртки пятигранника на втором листе.

Вот мы и добрались до сложных фигур. Теперь придётся поднапрячься, склеить такие фигуры нелегко! Для начала обычный цилиндр, его развёртки на втором листе.

А это более сложная фигура по сравнению с цилиндром, т.к. в её основании не круг, а овал.

Развёртки этой фигуры на втором листе, для овального основания сделано две запасных детали.

Чтобы аккуратно собрать цилиндр его детали нужно клеить встык. С одной стороны дно можно приклеить без проблем, просто поставьте на стол заранее склеенную трубку, положите на дно кружок и залейте клеем изнутри. Следите, чтобы диаметр трубы и круглого дна плотно подходили друг к другу, без щелей, иначе клей протечёт и всё приклеится к столу. Второй кружок приклеить будет сложнее, поэтому приклейте внутри вспомогательные прямоугольники на расстоянии толщины бумаги от края трубы. Эти прямоугольники не дадут упасть основанию внутрь, теперь вы без проблем приклеете кружок сверху.

Цилиндр с овальным основанием можно клеить также как и обычный цилиндр, но он имеет меньшую высоту, поэтому тут проще вставить внутрь гармошку из бумаги, а наверх положить второе основание и по краю приклеить клеем.

Теперь очень сложная фигура - конус. Его детали на третьем листе, запасной кружок для днища на 4-ом листе. Вся сложность склеивания конуса в его острой вершине, а потом ещё будет очень сложно приклеить дно.

Сложная и одновременно простая фигура это шар. Шар состоит из 12-ти пятигранников, развёртки шара на 4-ом листе. Сначала клеится две половинки шара, а потом обе склеиваются вместе.

Довольно интересная фигура - ромб, её детали на третьем листе.

А теперь две очень похожие, но совершенно разные фигуры, их отличие только в основании.

Когда склеите эти обе фигуры, то не сразу поймёте, что это вообще такое, они получились какие-то совсем невосприимчивые.

Ещё одна интересная фигурка это тор, только он у нас очень упрощён, его детали на 5-ом листе.

И наконец, последняя фигура из равносторонних треугольников, даже не знаю, как это назвать, но фигура похожа на звезду. Развёртки этой фигуры на пятом листе.

На сегодня это всё! Я желаю вам успехов в этой нелёгкой работе!

Много интересного можно найти для себя в тех сферах науки, которые, казалось бы, никогда не пригодятся в привычной жизни простого обывателя. Например, геометрия, о которой большинство забывают, только лишь переступив порог школы. Но странным образом малознакомые области науки становятся очень увлекательными, если с ними столкнуться поближе. Вот и геометрическая развертка многогранника - совершенно ненужная в повседневной жизни вещь - может стать началом увлекательного творчества, способного захватить и детей, и взрослых.

Красивая геометрия

Украшать интерьер дома, создавая своими руками необычные, стильные вещи, - это увлекательное творчество. Смастерить самостоятельно из плотной бумаги различные многогранники - значит создать уникальные вещи, которые могут стать просто занятием на день или два, а могут превратиться в дизайнерские интерьерные украшения. К тому же с развитием техники, способной к пространственному моделированию всевозможных вещей, стало возможным создание стильных и современных 3D-моделей. Есть мастера, которые при помощи простроения разверток по законам геометрии делают из бумаги макеты животных и различных предметов. Но это достаточно сложное математическое и чертежное творчество. Начать работать в подобной технике поможет

Разные грани - разные формы

Многогранники - это особая сфера геометрии. Они бывают простые - к примеру кубики, которыми дети играют с раннего возраста, - а бывают очень и очень сложные. Простроение развертки многогранников для склеивания считается достаточно сложной областью конструирования и творчества: нужно не только знать основы черчения, геометрические особенности пространства, но и иметь пространственное воображение, позволяющее оценить правильность решения еще на стадии проектирования. Но и одной фантазией не обойтись. Чтобы сделать развертки не достаточно просто представить, как в конце концов должна выглядеть работа. Нужно уметь правильно ее просчитать, сконструировать, а также грамотно начертить.

Самый первый многогранник - кубик

Скорее всего, каждый человек, посещавший школу, еще в начальных классах сталкивался на уроках труда с работой, результатом которой должен был стать бумажный кубик. Чаще всего учительница раздавала заготовки - развертки многогранника куба на плотной бумаге со специальными кармашками, предназначенными для склеивания граней модели в единое целое. Такой работой ученики начальной школы могли гордиться, ведь при помощи бумаги, ножниц, клея и своих усилий получалась интересная поделка - трехмерный куб.

Занимательные грани

Удивительно, но многие знания об окружающем мире становятся интересны не на школьной скамье, а лишь тогда, когда можно найти в них нечто увлекательное, способное дать что-то новое, необычное в привычной жизни. Не многие взрослые помнят, что те же многогранники делятся на огромное количество видов и подвидов. Например, есть так называемые платоновы тела - выпуклые многогранники, состоящие только лишь из Таких тел всего пять: тетраэдр, октаэдр, гексаэдр (куб), икосаэдр, додекаэдр. Они представляют собой выпуклые фигуры без впадин. Звездчатые многогранники состоят из этих основных фигур в различных конфигурациях. Поэтому-то развертка многогранника простого позволяет нарисовать, вернее начерить, а затем и склеить из бумаги звездчатый многогранник.

Правильные и неправильные звездчатые многогранники

Складывая платоновые тела между собой в определенном порядке, вы можете построить немало звездчатых многоранников - красивых, сложных, многокомпонентных. Но они будут называться "неправильными звездчатыми многогранниками". Правильных звездчатых многогранников всего четыре: малый звездчатый додекаэдр, большой звездчатый додекаэдр, большой додекаэдр и большой икосаэдр. Развертки многогранников для склеивания не будут простыми чертежами. Они, как и фигуры, будут состоять из нескольких компонентов. Так, например, малый звездчатый додекаэдр строится из 12 пятиугольных равнобочных пирамид, сложенных по типу правильного додекаэдра. То есть для начала придется начертить и склеить 12 одинаковых штук правильных пирамид, состоящих из 5 равных граней. И только затем из них можно сложить звездчатый многогранник. Развертка самого малого звездчатого додекаэра - сложное и практически невыполнимое задание. Чтобы ее простроить, нужно суметь на одной плоскости уместить соединенные друг с другом 13 разверток разных геометрических объемных тел.

Красота в простоте

Все объемные тела, построенные по законам геометрии, будут смотреться завораживающе, в том числе и звездчатый многогранник. Развертка каждого элемента любого подобного тела должна быть выполнена максимально точно. И даже самые простые объемные многогранники, начиная с платонового тетраэдра, - удивительная красота гармонии мироздания и труда человека, воплощенного в бумажной модели. Вот, допустим, самый многогранный из платоновых выпуклых многогранников - додекаэдр. В этой геометрической фигуре 12 абсолютно одинаковых граней, 30 ребер и 12 вершин.Чтобы сделать развертки правильных многогранников для склеивания, нужно приложить максимум аккуратности и внимательности. И чем крупнее фигура по размерам, тем точнее должны быть все измерения.

Как построить развертку самостоятельно?

Пожалуй, помимо склеивания многогранника - хоть звездчатого, хоть платоновского, - еще интереснее построить развертку будущей модели собственными силами, оценив свои способности к черчению, конструированию и пространственному вообжению. Простые платоновсткие тела состоят из простых многоугольников, которые в одной фигуре идентичны друг другу. Так, тетраэдр - это три равнобедренных треугольника. Прежде чем простроить развертку, нужно представить себе, как правильно сложить плоские многоугольники между собой, чтобы получить многогранник. Треугольники можно соединить между собой по ребрам, прочертив один рядом с другим. Для склеивания развертки многогранников схемы должны быть снабжены специальными кармашками или клапанами, которые позволят соединить все части в единое целое. Тетраэдр - простейшая фигура из четырех граней. Октаэдр можно представить как двойной тетраэдр, у него восемь гарней - равнобедренных треугольников. Гексаэдром называют знакомый всем с детства куб. Икосаэдр представляет собой соединение 20 равнобедренных треугольников в правильный выпуклый многогранник. Додекаэдр - это объемная фигура из 12 граней, каждая из которых представляет собой правильный пятиугольник.

Тонкости работы

Построить разверту многогранника и склеить из нее бумажную модель - дело тонкое. Развертку, конечно, можно взять уже готовую. А можно, приложив услилия, построить ее самостоятельно. Но чтобы сделать полноценную объемную модель многогранника, нужно ее собрать. Многогранник лучше всего делать из плотной бумаги, которая хорошо держит форму и не коробится от клея. Все линии, которые необходимо согнуть, лучше всего предварительно продавить, используя, например, непишущую шариковую ручку или обратную сторону лезвия ножа. Этот нюанс поможет сложить модель аккуратнее, с соблюдением размеров и направлений ребер.

Если сделать разные многогранники из цветной бумаги, то такие модели можно использовать в качестве декоративных элементов, украшающих помещение - детскую комнату, кабинет, гостиную. Кстати, многогранники можно назвать уникальной находкой декораторов. Современные материалы позволяют на основе геометрических фигур создавать оригинальные предметы интерьера.

3.1 «Рождение» великого физика Д.К.Максвелла

Однажды обыкновенный английский мальчик Джеймс, увлекшись изготовлением моделей многогранников, написал в письме к отцу: «… я сделал тетраэдр, додекаэдр и ещё два эдра, для которых не знаю правильного названия». Эти слова ознаменовали рождение в пока ничем не примечательном мальчике великого физика Джеймса Кларка Максвелла (Приложение 3). Думаю, что и вас, и ваших родных увлечёт изготовление моделей геометрических тел.

Кроме традиционных ёлочных украшений (хлопушек и фонариков) можно изготовить геометрические игрушки. Это модели правильных многогранников, сделанные из цветной бумаги. Ведь их форма – это образец совершенства! Совершенство форм, красивые математические закономерности, присущие правильным многогранникам, явились причиной того, что им приписывались различные магические свойства и все пять геометрических тел издавна были обязательными спутниками волшебников и звездочётов. И если потрудиться над их изучением и изготовлением, то наверняка они доставят радость и удовольствие, а возможно принесут и удачу.

3.2 Развёртки правильных многогранников

Одним из способов изготовления правильных многогранников является способ с использованием так называемых развёрток.

Если модель поверхности многогранника изготовлена из гибкого нерастяжимого материала (бумаги, тонкого картона и т. п.), то эту модель можно разрезать по нескольким рёбрам и развернуть так, что она превратится в модель некоторого многоугольника. Этот многоугольник называют развёрткой поверхности многогранника. Для получения модели многогранника удобно сначала изготовить развёртку его поверхности. При этом необходимыми инструментами являются клей и ножницы. Мо­дели многогранников можно сделать, поль­зуясь одной разверткой, на которой будут расположены все грани. Однако в этом случае все грани будут одного цвета.


3.3 Способ «плетения»

Кроме изготовления многогранников с помощью развёрток есть ещё один способ, при котором они сплетаются из нескольких полосок бумаги. Без применения клея модель приобретает жёсткую структуру после того, как будет заправлен последний кусочек бумаги.

Для того чтобы сплести тетраэдр, нужно:

Плетём куб:

Если полоски разного цвета, то у получившегося куба противоположные грани одинакового цвета. Этот способ интересен тем, что любые две полоски не зацеплены одна с другой, а все три зацеплены.

Возможно, при виде моделей многогранников кто-нибудь спросит: «Какая от них польза?» На это можно ответить так: «А разве всё красивое полезно?»

3.4 Ещё один способ изготовления многогранников

Для изготовления моделей многогранников можно воспользоваться рекомендациями, данными в книге М. Винниджера «Модели многогранников». «Автор этой книги, заражая своим энтузиазмом читателя, даёт ему ясные и четкие указания о том, как изготовить модели различных многогранников. Объяснения проиллюстрированы фотографиями моделей из собрания автора – возможно, наиболее полного в настоящее время. Но фотографии не в состоянии передать всего великолепия самих моделей. Наиболее сложные «курносые» модели не только крайне трудны в изготовлении, но и весьма декоративны. Это ли не превосходный пример родства истины и красоты!» – отмечает в предисловии к книге Г.С.М. Кокстер.

М. Винниджер отмечает: «Время, которое я затратил на изготовление моделей невыпуклых однородных многогранников, в существенной степени зависело от характера модели. Так, на простейшие из них требовалось не более трех-четырех часов, а в среднем же приходилось затрачивать восемьдесят часов, а некоторые сложные модели занимали двадцать-тридцать часов. Две модели отняли у меня свыше сотни часов каждая. Теперь, когда работа завершена, я, пожалуй, соглашусь с тем, что ее объем поразил и меня. Но китайская пословица гласит: «Если ты собираешься пройти тысячу ли, начни с того, что сделай первый шаг». За первым шагом последует другой, и вскоре красота открывшихся взору путника видов заставит его забыть о трудностях пути».

Прежде чем приступить к изготовлению многогранников ниже приведённым способом, необходимо познакомиться с общими рекомендациями. (Приложение 4).

3.4.1 Тетраэдр

Все четыре гра­ни тетраэдра – равносторонние треугольники. Четыре – это наименьшее число гра­ней, отделяющих часть трёхмерного пространства. Тем не менее, тетраэдр обладает многими свойствами, харак­терными для однородных многогран­ников. Все его грани суть правильные многоугольники, причём каждая отде­ляется ребром в точности от одной грани. Все многогранные углы тетра­эдра также равны между собой. Если нужно сде­лать модель тетраэдра разноцветной, следу­ет приготовить развертки для каждого типа грани в виде отдельного много­угольника. Для этого понадо­бится всего один трафарет в виде рав­ностороннего треугольника.

Необходимо сделать четыре заготовки разного цвета – например, Ж, С, О и К. При этом нужно оставить наклейки с каждой стороны, как показано на рисунке. Теперь склеиваем все четыре заготовки вместе, затем соединяем несклеенные боковые грани и склеиваем вначале только две из них между собой. Затем накладываем клей на оставшиеся наклейки и приклеиваем последнюю грань, как бы закрывая коробку.

Октаэдр

Так как его противоположные грани октаэдра лежат в параллельных плоскостях, то можно превосходно обойтись всего четырьмя красками. Модель этого многогран­ника мы начинаем делать, склеивая четыре треугольника. После того как склеим между собой грани 1 и 4, то в наших руках окажется правильная четырехугольная пирамида без квад­ратного основания. Эта часть состав­ляет ровно половину модели.

Вторая половина энантиоморфна первой. Тем не менее, проще продол­жить работу в такой последовательно­сти: сначала приклеить наклейки че­тырех оставшихся треугольников к соответствующим наклейкам на сторо­нах квадратного основания. Нужно просле­дить, чтобы противоположные грани октаэдра имели один и тот же цвет. Затем последовательно склеить наклейки соседних граней, сно­ва закрывая модель последним тре­угольником, как крышкой. Теперь можно заметить, что квадрат, только что послуживший основанием первой половины модели, на самом деле всего лишь один из трёх квадратов такого рода, которые можно видеть на полной модели. При этом ребра квадратов лежат в трёх взаимно перпендикуляр­ных плоскостях.

3.4.3 Гексаэдр (куб)

Несомненно, куб, или, как его иногда называют математики,гексаэдр – са­мый общеизвестный и широко исполь­зуемый многогранник. Все шесть его граней – квадраты, сходящиеся по два вдоль каждого ребра и по три в каж­дой вершине. Можно начать по­стройку модели куба, выбрав один квадрат и присоединив к нему четыре других, как показано на рисунке. Затем нужно склеить наклейки соседних боковых граней, причём склеенные по­парно наклейки вновь образуют как бы жесткий скелет многогранника. Оста­ется добавить последнюю грань, и это действие уже с полным правом можно будет уподобить закрыванию ящика крышкой.

Возможно, что в своей простоте куб не самый привлекательный многогран­ник. Но он обладает несколькими уди­вительными свойствами в отношении других Платоновых и некоторых архи­медовых тел. А объединение пяти ку­бов можно поместить в додекаэдр, и при этом получается очень красивая модель.

Икосаэдр

Икосаэдр – одно из пяти платоновых тел, по простоте следующее за тетраэдром и октаэдром. Их объединя­ет то обстоятельство, что гранями каждого являются равносторонние тре­угольники. При изготовлении модели икосаэдра можно выбрать любую из двух эффектных возможностей распре­деления пяти цветов. Во-первых, ико­саэдр может быть раскрашен так, что у каждой вершины встретятся все пять цветов (правда, в таком случае проти­воположные грани не будут окрашены одинаково). Другой способ обеспечи­вает противоположным граням одина­ковые цвета, зато у каждой вершины, за исключением двух полярных, будет повторяться по кругу один цвет. Обе раскраски очень интересны. Обе модели можно строить, исходя из одного и того же начального расположения пяти равносторонних треугольников. Они образуют невысо­кую пятиугольную пирамиду без осно­вания. К сторонам её основания нужно при­клеить следующие пять треугольников, руководствуясь той или иной таблицей раскраски. Между ними приклеивается по одному треугольнику – это сделать несложно, если обратить внимание на то, что в каждой вершине сходятся пять граней. Завершая модель, при­клеивают последние пять треугольников. Чтобы облегчить пользование таб­лицами раскраски, нужно запомнить: первая строка любой таблицы задает раскрас­ку пяти треугольников, окружающих «северную полярную» вершину ико­саэдра. Последующие две строки ука­зывают раскраску «экваториального» кольца из десяти чередующихся равно­сторонних треугольников. Наконец, четвертая строка показывает раскрас­ку граней у, «южного полюса» икоса­эдра.

Интересен порядок рас­краски не только вблизи «полюсов», но и у других десяти вершин, то по этим таблицам его тоже легко найти. Надо совершить круговой обход по таблице по следующему правилу: на­чиная с двух соседних цветов в крайней строке, опуститься (или подняться) на следующую строку, затем еще на одну и после этого вернуться на исходные. Например:

Это наводит на мысль о том, что таблицы раскраски можно задавать совершенно по-иному – нумеруя вер­шины и выписывая порядок чередова­ния цветов у каждой из них. Правда, это приведёт к тому, что каждая тре­угольная грань икосаэдра будет по­именована в такой таблице трижды, но все же таблицы удобны: с их по­мощью легче последовательно «об­клеивать» вершину. Для икоса­эдра таблицы этого типа выглядят так:

Здесь указаны раскраски только шести вершин, причем вершина (0) – снова «северный полюс» икосаэдра. Для обе­их моделей вершины, противополож­ные этим, имеют энантиоморфную рас­краску. Её можно получить, читая со­ответствующую строку в обратном порядке, то есть справа налево.

Додекаэдр

В известном смысле додекаэдр пред­ставляет наибольшую привлекатель­ность среди Платоновых тел, соперни­чая с икосаэдром, который почти ему не уступает (а быть может, в чём-то и превосходит). Пожалуй, пальму пер­венства додекаэдр получает за свои три звездчатые формы, описываемые ниже.

Модель этого многогранника можно сделать четырёхцветной двумя спосо­бами; если же воспользоваться для раскраски шестью цветами, то про­тивоположные грани легко сделать од­ноцветными. Такую раскраску хорошо перенести на упомянутые выше звезд­чатые формы додекаэдра. Приводим описание.

Построение модели начинается с приклеивания пяти разноцветных пяти­угольников – скажем, Ж, С, О, К, 3 – к одному центральному пятиугольни­ку, например белого цвета (Б). После этого следует склеить цветные пятиугольники между собой – и по­ловина дела сделана. Остаётся подклеить остальные грани додекаэд­ра к уже сделанной половине таким образом, чтобы противоположные гра­ни были одноцветными.

На рисунке показана четырехцветная раскраска додекаэдра. Можно восполь­зоваться и энантиоморфным порядком цветов. Иногда удобнее обращаться именно к такой раскраске – особенно для моделей, имеющих симметрию до­декаэдра.

Заключение

Миром красоты и гармонии мы называем правильные многогранники. Ведь на протяжении всей истории человечества эти многогранники восхищали симметрией и совершенством форм. Изображения пяти правильных многогранников – «Тела Платона», 13 полуправильных выпуклых многогранников – «Тела Архимеда» и 4-х невыпуклых многогранников – «Тела Пуансо – Кеплера» приводят пытливые умы к размышлению о красоте истин.

Подводя итоги своей работы, я могу сделать вывод: существует 5 правильных выпуклых многогранников: тетраэдр (четырёхгранник), гексаэдр (шестигранник), октаэдр (восьмигранник), додекаэдр (двенадцатигранник), икосаэдр (двадцатигранник) – Платоновы тела, 4 звездчатых правильных многогранника – тела Кеплера – Пуансо, 13 полуправильных многогранников – тела Архимеда. В работе описаны их свойства, даны развёртки для их изготовления, показано, где они встречаются в природе.

Выполняя работу, я научилась изучать литературу по названной теме, делать анализ прочитанного, выбирать нужный материал, искать ответы на возникающие вопросы, делать выводы.

При работе над рефератом «В мире правильных многогранников» я прикоснулась к удивительному миру красоты, совершенства, гармонии, узнала имена учёных, художников, которые посвятили этому миру свои труды, являющиеся шедеврами науки и искусства. Ещё раз убедилась, что истоки математики – в природе, окружающей нас.

В ходе данного исследования был проведён анализ определений правильных многогранников, установлены условия существования правильных многогранников, выявлены свойства правильных многогранников, сделано описание технологии их построения.

Литература

1. Александров А.Д. , Вернер А.Л. , Рыжин В.И. Начало стереометрии. – М.: Просвещение, 1981.

2. Атанасян Л. С., Бутузов В. Ф. и др. Геометрия. Учебник для 10 – 11 классов средней школы. – М.: Просвещение, 2001.

3. Бевз Г. П., Бевз В. Г., Владимирова Н. Г. Геометрия. Учебник для 7 – 11 классов средней школы. – М.: Просвещение, 1992.

4. Веннинджер М. Модели многогранников. – М.: Мир, 1974.

5. Выгодский М. Я. Справочник по элементарной математике. – М.: Наука,1972.

6. Глейзер Г. И. История математики в школе. IX-X классы. Пособие для учителей. – М.: Просвещение, 1983.

7. Клопский В. М., Скопец З. А., Ягодовский М. И. Геометрия 9 – 10 класс. – М.: Просвещение, 1983.

8. Погорелов А. В. Геометрия. Учебник для 7- 11 классов средней школы. – М.: Просвещение, 1990.

9. Савин А. П., Станцо В. В., Котова А. Ю. Я познаю мир: Детская энциклопедия: Математика. – М.: АСТ, 1999.

10. Смирнова И. М., Смирнов В. А. Геометрия. Учебник для 10 – 11 классов общеобразовательных учреждений. – М.: Мнемозина, 2003.

11. Шарыгин И. Ф., Ерганжиева Л. Н. Наглядная геометрия. 5 – 6 кл.: Пособие для общеобразовательных учебных заведений. – М.: Дрофа, 1999.

12. Математика. Еженедельная учебно-методическая газета. №24, 2004.с. 15-32.

Приложение 1

ПЛАТОН (428 или 427 до н. э. - 348 или 347), древнегреческий философ. Ученик Сократа, ок. 387 основал в Афинах школу. Идеи (высшая среди них - идея блага) - вечные и неизменные умопостигаемые прообразы вещей, всего преходящего и изменчивого бытия; вещи - подобие и отражение идей. Познание есть анамнесис - воспоминание души об идеях, которые она созерцала до ее соединения с телом. Любовь к идее (Эрос) - побудительная причина духовного восхождения. Идеальное государство - иерархия трех сословий: правители-мудрецы, воины и чиновники, крестьяне и ремесленники. Платон интенсивно разрабатывал диалектику и наметил развитую неоплатонизмом схему основных ступеней бытия. В истории философии восприятие Платона менялось: «божественный учитель» (античность); предтеча христианского мировоззрения (средние века); философ идеальной любви и политический утопист (эпоха Возрождения). Сочинения Платона - высокохудожественные диалоги; важнейшие из них: «Апология Сократа», «Федон», «Пир», «Федр» (учение об идеях), «Государство», «Теэтет» (теория познания), «Парменид» и «Софист» (диалектика категорий), «Тимей» (натурфилософия).

ПЛАТОН (427-347 или 348 до н. э.), древнегреческий мыслитель, наряду с Пифагором, Парменидом и Сократом - родоначальник европейской философии; глава философской школы Академия.

Жизнь

Происходил из аристократической семьи, принимавшей активное участие в политической жизни Афин (род его отца Аристона, по преданию, восходил к мифическому царю Кодру; среди предков матери, Периктионы, - законодатель Солон; после победы спартанцев в Пелопоннесской войне дядя Платона, Хармид, - один из Десяти ставленников Лисандра в Пирее в 404-403, Критий - один из Тридцати тиранов в Афинах).

Получил традиционное для аристократического юноши хорошее воспитание (физическое и мусическое). В юности слушал софиста гераклитовской ориентации Кратила, в 20 лет познакомился с Сократом, начал регулярно посещать его беседы и отказался от реальной политической карьеры. Отличался крайней застенчивостью и замкнутостью.

Платон. Из «Апологии Сократа»

После смерти Сократа (399) Платон уезжает в Мегары. Принимает участие в Коринфской войне, в походах в Танагру (395) и Коринф (394). В 387 посещает Южную Италию, Локры Эпизефирские - родину древнейших записанных законов Залевка (из Локр происходит пифагореец Тимей, именем которого назван знаменитый диалог Платона, путешествие вообще задумывалось прежде всего ради знакомства с пифагорейцами). В Сицилии (Сиракуза), он знакомится с Дионом, приближенным правителя Сиракуз Дионисия I Старшего. По возвращении из Сицилии (387) основал в Афинах свою философскую школу - в гимнасии Академия. Знакомство с Дионом, попавшим под обаяние личности Платона и его образа мыслей, способствовало тому, что в 367-366 и 361 Платон совершил еще две поездки в Сицилию.

Школа Платона

Использование общественных гимнасиев для занятий науками и ораторским искусством было обычным для Афин 5-4 вв.; «школа Платона», вероятно, формировалась постепенно, по названию гимнасия она также стала именоваться Академией. Среди принадлежавших к платоновскому кружку - его племянник Спевсипп, ставший во главе Академии после смерти Платона, Ксенократ, третий схоларх Академии, знаменитый математик и астроном Евдокс Книдский, остававшийся во главе школы во время второй поездки Платона в Сицилию. В 366 в Академии появляется Аристотель и остается там вплоть до смерти Платона.

Сочинения

До нас дошло издание сочинений Платона, предпринятое пифагорейцем Трасиллом Александрийским, придворным астрологом императора Тиберия (ум. 37), разбитое на тетралогии:

«Евтифрон», «Апология», «Критон», «Федон».

«Кратил», «Теэтет», «Софист», «Политик».

«Парменид», «Филеб», «Пир», «Федр».

«Алкивиад I», «Алкивиад II», «Гиппарх», «Соперники».

«Феаг», «Хармид», «Лахет», «Лисид».

«Евтидем», «Протагор», «Горгий», «Менон».

«Гиппий Больший», «Гиппий Меньший», «Ион», «Менексен».

«Клитофонт», «Государство», «Тимей», «Критий».

«Минос», «Законы», «Послезаконие», «Письма».

Помимо этого под именем Платона дошел ряд других диалогов.

Начиная с конца 17 в., корпус текстов Платона, подвергался тщательному критическому рассмотрению с точки зрения их подлинности и хронологии.


Похожая информация.












У вас есть немного свободного времени? Бумага, ножницы и клей?
Тогда приступаем:


Что такое развертка многогранника? Вы скажете — кусок картона, из которого можно свернуть данный многогранник. В этом есть правда, но это не вся правда. Оказывается, понятие развертки включает в себя больше, чем просто кусок картона.

Какой многогранник можно свернуть из столь хорошо известного латинского креста? Конечно же, куб. Для этого надо покрасить ребра, как это сделала наша волшебная кисточка (ребра одинакового цвета склеиваются в многограннике друг с другом).

На самом деле, конечно же, лучше было бы раскрашивать не ребра, а каждую пару точек в разные цвета. Это бы задало, как говорят в математике, условия склейки границ.

После того как условия склейки границ заданы, ребра, проходящие внутри куска картона, определены однозначно по теореме А.Д. Александрова.

Итак, из креста можно сложить куб.

Но оказывается, что если условия склейки границ задать по-другому, то можно получить совсем даже не куб!

Наша волшебная кисточка покрасила границы вот таким образом. Еще один ее взмах — и мы уже знаем, как определены ребра внутри куска картона. Если теперь, следуя нарисованным условиям склейки, сложить многогранник, то получим пирамиду!

Не так давно было доказано, что по-разному задавая условия склейки границ латинского креста, из него можно сложить 5 различных типов выпуклых многогранников.

Итак, как мы убедились, в понятие развертки входит не только кусок картона, но и условия склейки его границ. Если последнее не определено, то из одного и того же куска можно сложить разные выпуклые многогранники.
РАЗВЁРТКИ КУБА
Почти каждый, кто пытается самостоятельно найти все развёртки куба
сталкивается с вопросом: все ли развёртки найдены? Дело в том, что куб очень симметричная фигура и на подсознательном уровне нам кажется, что и число развёрток куба должно быть каким-то «красивым», похожим на другие характеристики куба (напомним, что куб имеет 12 рёбер, 8 вершин, 6 граней и 4 диагонали). Как оказалось, куб имеет 11 развёрток. И когда мы находим 11-ю развёртку, кажется, что не все ещё развёртки найдены и самые сложные ещё скрыты от нас.
Куб имеет именно 11 развёрток.



РАЗВЁРТКА ПИРАМИДЫ



Сделать пирамиду из бумаги очень легко, потому что я представлю вам готовую развертку, вам только нужно будет перенести ее на ваш лист, вырезать и склеить. Но, есть одно Большое И Положительное Но, если у вас есть принтер, тогда Вы сделаете пирамиду как минимум в два раза быстрее. Если он у вас есть, тогда надо только распечатать развертку на принтере, вырезать и склеить – Все, пирамида готова! На этом все. Пользуйтесь на здоровье, делайте свою жизнь проше и получайте в школе за геометрические финуры только пятеркИ, ну или хотя бы четверки! Удачи!



Посмотрите интересные развёртки


Похожие публикации