Способ получения наночастиц серебра. Получение наночастиц серебра

ПРОДУКТ СОВРЕМЕННЫХ НАНОТЕХНОЛОГИЙ – КОЛЛОИДНОЕ НАНОСЕРЕБРО

Серебро – металл белого цвета, практически не изменяющийся под воздействием кислорода воздуха при комнатной температуре, однако из-за наличия в воздухе сероводорода со временем покрывается тёмным налётом сульфида серебра Ag2S:

4Ag + O2 + 2H2S = 2Ag2S + 2H2O.

Удалить этот сульфид с поверхности серебряного изделия можно механически, используя различные чистящие пасты или тонкий зубной порошок.

Серебро устойчиво в воде, соляная, разбавленная серная кислота и царская водка на него не действуют, поскольку на поверхности металла образуется защитная плёнка его хлорида AgCl. Серебро хорошо растворяется лишь в азотной кислоте с образованием растворимого нитрата натрия AgNO3:

Ag + 2HNO3 = AgNO3 + NO2 + H2O.

При добавлении к раствору нитрата серебра щёлочи выделяется тёмно-коричневый осадок оксида серебра Ag2O:

2AgNO3 + 2NaOH = 2NaNO3 + Ag2O + H2O.

Основные физические и механические свойства серебра:

Атомная масса ……………………………………………………107, 87 Плотность, г/см3 ……………..……………………………………10, 49 Температура, ОС: плавления...............……………………………………………960, 5 кипения ……………………...............………………………… 2210 Скрытая теплота плавления, кал/г………………….. 25 Удельная теплоёмкость, кал/ (г. град) ………….. 0, 056 Удельное электросопротивление, мкОм. см …...1, 62 Теплопроводность, кал/ (см. сек. град)...........0, 974

  • Бактерицидные свойства серебра известны с глубокой древности. Еще в Древней Индии с помощью этого металла обеззараживали воду, а персидский царь Кир хранил воду в серебряных сосудах.

Историк древнего мира Геродот приводит сведения о том, что в V веке до нашей эры персидский царь Кир во время походов пользовался питьевой водой, сохраняемой в серебряных “священных сосудах”. В религиозных индусских книгах встречаются упоминания об обеззараживании воды путем кратковременного погружения в нее раскаленного серебра, либо в результате длительного контакта с этим металлом в обычных условиях.



В некоторых странах существовал обычай при освящении колодцев бросать в воду серебряные монеты, тем самым улучшая качество воды, а также хранить воду в серебряных чашах. Американские первооткрыватели, путешествуя, часто клали серебряный доллар в молоко, чтобы задержать его скисание.

  • Широкое распространение при лечении ран серебро получило во время Великой Отечественной войны. Серебряную воду применяли при лечении свищей и язв, образовавшихся в результате костного туберкулеза и туберкулеза лимфатических желез с распадом и нагноением. Результаты лечения, как правило, были положительные: язвы и свищи, не закрывавшиеся у некоторых больных несколько лет, несмотря на систематическое лечение кварцем, рыбьим жиром, мазью Вишневского и другими препаратами, после применения серебряной воды полностью закрывались и заживали.

Пионером исследований в области серебра считают французского врача Бенье Креде , который в конце XIX века сообщил об успехах в лечении сепсиса ионами серебра. Продолжая исследования, он выяснил, что серебро в течение трех дней убивает дифтерийную палочку, в течение двух - стафилококки, а возбудитель тифа - за сутки.

  • В конце XIX столетия швейцарский ботаник ботаник Карл Негель установил, что причиной гибели клеток микроорганизмов является воздействие на них ионов серебра. Ионы серебра выступают в роли защитников, уничтожая болезнетворные бактерии, вирусы, грибки. Их действие распространяется более чем на 650 видов бактерий (для сравнения – спектр действия любого антибиотика 5–10 видов бактерий). Интересно, что полезные бактерии при этом не погибают, а значит не развивается дисбактериоз, столь частый спутник лечения антибиотиками.

При этом серебро не просто металл, способный убивать бактерии, но и микроэлемент, являющийся необходимой составной частью тканей любого живого организма. В суточном рационе человека должно содержаться в среднем 80 мкг серебра. При употреблении ионных растворов серебра не только уничтожаются болезнетворные бактерии и вирусы, но и активизируются обменные процессы в организме человека, повышается иммунитет.

  • В 1942 гиду англичанину Р. Бентону удалось остановить эпидемию холеры и дизентерии, свирепствовавшую на строительстве дороги Бирма - Ассам. Бентон наладил снабжение рабочих чистой питьевой водой, обеззараженной с помощью электролитического растворения серебра (концентрация серебра 0,01 мг/л).

Когда бактерицидные свойства серебра были изучены, оказалось, что решающую роль здесь играют положительно заряженные ионы серебра Ag+. Ионизация серебра повышает активность в водных растворах. Катионы серебра подавляют деятельность фермента, обеспечивающего кислородный обмен у простейших микроорганизмов болезнетворных бактерий, вирусов и грибков (порядка 700 видов патогенной «флоры» и «фауны»). Скорость уничтожения зависит от концентрации ионов серебра в растворе: так, кишечная палочка погибает через 3 мин при концентрации 1 мг/л, через 20 мин - при 0,5 мг/л, через 50 мин - при 0,2 мг/л, через 2 ч - при 0,05 мг/л. При этом обеззараживающая способность серебра выше, чем у карболовой кислоты, сулемы и даже таких сильных окислителей, как хлор, хлорная известь, гипохлорид натрия.

  • Серебро - не просто металл, но важный для организма микроэлемент, необходимый для нормального функционирования желез внутренней секреции, мозга и печени. Но серебро - тяжелый металл, и его насыщенные растворы не полезны человеку: предельно допустимая концентрация серебра - 0,05 мг/л. При приеме 2 г солей серебра возникают токсические явления, а при дозе в 10 г вероятен летальный исход. Кроме того, если превышать предельную дозу в течение нескольких месяцев, возможно постепенное накапливание металла в организме.

Высокая биологическая активность микроэлементов-металлов в организме связана, прежде всего, с участием их в синтезе некоторых ферментов, витаминов и гормонов. По данным А.И. Войнара, в суточном рационе человека в среднем должно содержаться 80 мкг ионов серебра. Установлено, что в организме животных и человека содержание серебра составляет 20 мкг на 100 г сухого вещества. Наиболее богаты серебром мозг, железы внутренней секреции, печень, почки и кости скелета.

  • Ионы серебра принимают участие в обменных процессах организма. В зависимости от концентрации его катионы могут как стимулировать, так и угнетать активность ряда ферментов. Под влиянием серебра в два раза усиливается интенсивность окислительного фосфорилирования в митохондриях головного мозга, а также увеличивается содержание нуклеиновых кислот, что улучшает функцию головного мозга.

При инкубации различных тканей в физиологическом растворе, содержащем 0,001 мкг катиона серебра, возрастает поглощение кислорода мозговой тканью на 24%, миокардом – на 20%, печенью – на 36%, почками – на 25%. Повышение концентрации ионов серебра до 0,01 мкг снижало степень поглощения кислорода клетками этих органов, что свидетельствует об участии катионов серебра в регуляции энергетического обмена.

  • В лаборатории вирусологии Киевского государственного университета проводились исследования по изучению физиологического действия серебра. Установлено, что дозы серебра 50; 200 и 1250 мкг/л оказывают благотворное влияние на экспериментальных животных. Крысы, которые пили воду, содержащую ионы серебра, прибавляли в весе и развивались быстрее, чем животные контрольной группы. С помощью спектрального анализа в печени экспериментальных животных было обнаружено 20 мкг серебра на 100 г сухой массы, что соответствовало нормальному содержанию серебра в печени крыс.

Этими сследованиями было доказано, что дозы серебра 50–250 мкг/л являются физиологическими и не оказывают вредного воздействия на организм при длительном применении. К такому же выводу пришли ряд исследователей, изучая влияние серебра, вводимого в дозах, значительно превышающих предельно допустимые, на органы и системы человека и животных. Так, патогистологические исследования подопытных животных, которые получали с питьевой водой серебро в дозах 20000–50000 мкг/л, показали, что при длительном введении в организм ионного серебра происходит накопление его в тканях организма. Однако отложение серебра в тканях не сопровождалось воспалительными и деструктивными изменениями внутренних органов.

  • Исследованиями А.А. Масленко показано, что длительное употребление человеком питьевой воды, содержащей 50 мкг/л серебра (уровень ПДК), не вызывает отклонений от нормы функции органов пищеварения. Не было обнаружено в сыворотке крови изменений активности ферментов, характеризующих функцию печени. Не выявлено также патологических сдвигов в состоянии других органов и систем человека и при употреблении в течении 15 суток воды, обработанной серебром в дозе 100 мкг/л, то есть в концентрациях, в два раза превышающих допустимые.

Следует подчеркнуть, что длительное применение больших доз серебра – концентрацией раствора 30 – 50 мг/л в течение 7–8 лет c лечебной целью, а также при работе с соединениями серебра в производственных условиях может привести к отложению серебра в коже и изменению окраски кожи – аргирии , профессиональной болезни ювелиров («цвет загара»), которая является следствием фотохимического восстановления ионов серебра. При обследовании ряда больных с явлениями аргирии не выявлено изменений в функциональном состоянии органов и систем, а также в биохимических процессах, происходящих в организме, более того у всех людей с признаками аргирии наблюдалась резистентность к большинству вирусных и бактериальных инфекций.

  • Большое влияние на развитие аргирии оказывает индивидуальная предрасположенность организма к серебру, качественные и количественные показатели иммунитета и другие факторы. Косвенным доказательством этого может служить факт, что дозы, которые могут приводить к аргирии, различны. В литературе имеются указания на то, что у некоторых людей даже при приеме больших доз серебра аргирия не возникает. По данным Вудворда Р.Л. и других исследователей, дозы серебра 50–200 мкг/л, исключают возможность аргирии.

При изучении действия препаратов серебра на организм человека отмечено его стимулирующее действие на кроветворные органы, проявляющееся в исчезновении молодых форм нейтрофилов, увеличении количества лимфоцитов и моноцитов, эритроцитов и гемоглобина, замедлении СОЭ.

  • В последние годы в научной литературе появились сведения о том, что серебро является мощным иммуномодулятором, сравнимым со стероидными гормонами . Установлено, что в зависимости от дозы, серебро может как стимулировать, так и подавлять фагоцитоз. Под влиянием серебра повышается количество иммуноглобулинов классов А, М, G, увеличивается процентное содержание абсолютного количества Т-лимфоцитов.

Таким образом, в свете современных представлений, серебро рассматривается как микроэлемент, необходимый для нормального функционирования внутренних органов и систем, а также как мощное средство, повышающее иммунитет и активно воздействующее на болезнетворные бактерии и вирусы. В концентрации 0,05–0,1мг/л серебро оказывает омолаживающее воздействие на кровь и благотворно влияет на протекание физиологических процессов в организме.

«Химия и жизнь» №1, 2010

Говорят, что нанотехнологии - это наше будущее. На самом деле пользуемся мы ими давно, просто не знаем, что они «нано». Более того, нанотехнологии применяли уже три тысячи лет назад. В статье рассказывается о том, как мастера и ученые разных времен и народов манипулировали нанообъектами, еще не понимая, что делают именно это. И если уж их технологии заслуживают модной приставки «нано», то современным химикам (см. статью главного редактора в этом же номере) тем более не стоит упускать эту возможность.

Основатель нанотехнологии - знаменитый американский физик и лауреат Нобелевской премии Ричард Фейнман. Он достаточно подробно рассмотрел последствия безграничной миниатюризации с позиций теоретической физики в своем известном выступлении перед Американским физическим обществом в декабре 1959 года. Правда термин «нанотехнологии» был введен позднее, а широкое распространение получил только в последние годы.

Однако тот факт, что мелкие частицы различных веществ обладают иными свойствами, чем то же вещество с более крупными размерами частиц, был известен давно. Люди занимались нанотехнологиями и не догадывались об этом. Конечно, нельзя говорить о широком и осознанном использовании таких технологий, поскольку во многих случаях секрет производства просто передавали из поколения в поколение, не вдаваясь в причины уникальных свойств, которые приобретают материалы.

Древний Египет

Недавние исследования захоронений, проведенные доктором Филипом Вальтером из Центра исследований и реставрации французских музеев, показали, что в Древнем Египте нанотехнологии применяли для окрашивания волос в черный цвет. Группа исследователей не только изучила образцы волос из древнеегипетских погребений, но также в серии экспериментов воспроизвела древнюю технологию окрашивания (рис. 1). До этого считалось, что египтяне использовали преимущественно натуральные растительные красители - хну и басму. Однако оказалось, что в черный цвет волосы красили пастой из извести Ca(ОН) 2 , оксида свинца PbO и небольшого количества воды. В процессе окрашивания получались наночастицы галенита (сульфида свинца).

Естественный черный цвет волос обеспечивает пигмент меланин, который в виде включений распределен в кератине волоса. Древнеегипетским парикмахерам удавалось добиться, чтобы красящая паста реагировала с серой, входящей в состав кератина, и образовывались частицы галенита размером до пяти нанометров. Они-то и обеспечивали равномерное и устойчивое окрашивание. При этом процесс затрагивал только волосы, а в кожу головы соединения свинца не проникали.

Древний Рим

Чаша Ликурга (IV век до н.э.) - одно из выдающихся произведений древнеримских стеклодувов, хранящихся в Британском музее. Этот кубок необычен не только своими оптическими свойствами, но и уникальной для тех времен методикой изготовления. Матовая зеленая чаша становится красной, если ее осветить изнутри (рис. 2). Впервые анализ фрагмента чаши Ликурга провели в лабораториях «Дженерал электрик» в 1959 году - ученые пытались выяснить, что это за уникальное красящее вещество. Химический анализ показал, что хотя чаша состоит из обычного натриево-известково-кварцевого стекла, в нем есть около 1% золота и серебра, а также 0,5% марганца. Тогда же исследователи предположили, что необычный цвет и рассеивающий эффект стекла обеспечивает коллоидное золото (рис. 2). Очевидно, что технология получения подобного материала была очень сложной.

Позже, когда методики исследования стали совершеннее, ученые обнаружили с помощью электронного микроскопа и рентгенограмм частицы золота и серебра размером от 50 до 100 нм. Именно они отвечали за необычную окраску кубка. Профессор Гарри Этуотер в своей обзорной статье по плазмонам, опубликованной в апрельском номере «Scientific American » 2007 года, объяснил это явление так: «Благодаря плазмонному возбуждению электронов металлических частиц, распределенных в стекле, чаша поглощает и рассеивает синее и зеленое излучение видимого спектра (это сравнительно короткие волны). Когда источник света снаружи и мы видим отраженный свет, то плазмонное рассеивание придает чаше зеленоватый цвет, а когда источник света оказывается внутри чаши, то она кажется красной, поскольку стекло поглощает синюю и зеленую составляющие спектра, а более длинная красная - проходит».

Витражи

Яркие цвета витражей, украшающих храмы средневековой Европы, впечатляют нас до сих пор. Исследования показали, что стекло делали цветным добавки наночастиц золота и других металлов. Чжу Хуай Юн из Технологического университета Квинсленда (Австралия) высказал предположение, что витражи были не только произведениями искусства, но и, выражаясь современным научным языком, фотокаталитическими очистителями воздуха, удаляющими органические загрязнения. Катализаторами служили те же самые наночастицы золота. Ученый доказал, что крошечные частицы золота на поверхности стекла под воздействием солнечного света переходили в возбужденное состояние и могли разрушать органические загрязнения (те, которые до них долетали). Более того, они и сегодня сохраняют свою каталитическую активность.

«Когда золото измельчено до размеров наночастиц, оно становится очень активным под действием солнечного света. Электромагнитные колебания солнечного излучения резонируют с колебаниями электронов золотых наночастиц. В результате общее магнитное поле на поверхности наночастиц золота увеличивается в сотни раз и разрушает межмолекулярные связи загрязняющих агентов, содержащихся в воздухе». Профессор Чжу предполагает, что побочным продуктом этих реакций был углекислый газ, который в небольших количествах сравнительно безопасен.

В настоящее время аналогичная технология лежит в основе создания эффективных очистителей воздуха. Для их работы достаточно солнечного света, нагревающего наночастицы золота, тогда как обычные очистители (в них обычно используют оксид титана, серебро) требуют гораздо больше энергии для нагрева всего катализатора.

Восток - дело тонкое

Во время крестовых походов европейцы столкнулись с лезвиями из дамасской стали, обладающими уникальными свойствами. Европейские оружейники не умели делать такие клинки. У них был характерный волнистый узор на поверхности - его по названию плетения ткани называли дамаск, - необычные механические свойства (гибкость и твердость) и исключительно острое лезвие.

Считается, что дамасские лезвия выковывали из небольших «пирогов» стали (его называли вуц), произведенных в Древней Индии. Сложная термомеханическая обработка, ковка и отжиг, применяемые при получении вуца, придавали стали необычные свойства и обеспечивали ее исключительное качество. Чаще всего в литературе можно встретить «рецепт» производства вуца, который был в ходу в Салеме и некоторых частях Майсора (Южная Индия).

Кусок плавкого железа, полученный из магнитной руды, весом около фунта мелко дробится, увлажняется и помещается в горн из огнеупорной глины вперемешку с мелко нарубленными кусками древесины ранавара (Cassia auriculata, дерево семейства бобовых). После плавки в горне открытые горшки покрывают зелеными листьями калотрописа (Calotropis gigantea ), поверх которых накладывают лепешки из глины, высушенной на солнце до твердого состояния. Древесным углем заменить зеленые листья нельзя, получится не то. Дюжины две таких горшков (тиглей) помещают на пол печи, жар в которой поддерживают с помощью мехов из бычьих пузырей. Топливом служил в основном древесный уголь и высушенные на солнце коровьи лепешки. Через два-три часа плавки тигли остужают, раскалывают и оттуда извлекают заготовку, формой и размером напоминающую половину яйца. Согласно записям известного путешественника и купца Жана-Батиста Тавернье, самые лучшие заготовки для стали делали под Голкондой (Центральная Индия). Они были размером с небольшой пирог, и их хватало, чтобы сделать два меча.

Образец стали, взятый от подлинной дамасской сабли работы известного оружейника семнадцатого века Ассэда Уллаха, ученые Дрезденского университета (Германия) четыре года назад исследовали с помощью электронного микроскопа высокого разрешения. В структуре материала они обнаружили углеродные нанотрубки. Ученые и до этого не раз пытались определить микроструктуру дамасской стали, но на этот раз они сначала протравили образцы соляной кислотой, и именно это дало неожиданные результаты. После обработки обнаружились неразрушенные структуры цементита (карбида железа, который упрочняет сталь). Это позволило физикам предположить, что волокна цементита заключены в углеродные нанотрубки (рис. 3), которые и защищают его от растворения в соляной кислоте.

Откуда в дамасской стали взялись нанотрубки? Сформировались из углеводородов внутри микропор, причем катализатором могли служить ванадий, хром, марганец, кобальт, никель и некоторые редкоземельные металлы, содержащиеся в руде. При производстве дамасской стали температура обработки была ниже стандартной - 800°C. Во время циклической тепловой обработки получались углеродные нанотрубки, которые потом превращались в нановолокна и крупные частицы цементита (Fe 3 C). Циклическая механическая обработка (ковка) и соответствующий температурный режим постепенно распределяли углеродные нанотрубки в плоскостях, параллельных плоскости ковки, делая микроструктуру стали мелкозернистой и пластинчатой. И действительно, как показали последние исследования ученых из Дрезденского технического университета, микроструктура цементита представлена нановолокнами.

Авторы исследования считают, что особенная слоистая структура дамасских лезвий связана также с примесями, содержавшимися в руде из редких индийских месторождений. Уменьшающиеся запасы этой руды привели к тому, что многие оружейники, не знавшие тогда о легирующих элементах, не смогли получить дамасскую сталь, и после истощения рудников в конце XVIII века никому так и не удалось полностью воссоздать ее. Даже зная древний рецепт, европейские оружейники не смогли сделать настоящую дамасскую сталь, которая имела уникальные свойства благодаря наноструктурам.

Изобретение может быть использовано в области химии, медицины и нанотехнологии. Способ получения наночастиц серебра включает приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л. Полученные растворы смешивают при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00 и выдерживают при температуре 15÷55°C в течение 0,34÷48 часов в защищенном от света месте с получением раствора супрамолекулярного полимера. Полученный раствор супрамолекулярного полимера разбавляют водой в объемном соотношении 1:1. Готовят водный раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавляют в раствор супрамолекулярного полимера при постоянном перемешивании. Изобретение позволяет получить наночастицы серебра со средним гидродинамическим радиусом 20 нм. 4 ил., 1 пр.

Рисунки к патенту РФ 2526390

Изобретение относится к области получения наноразмерных структур из серебра, полученных в результате химического восстановления борогидридом натрия ионов серебра, включенных в супрамолекулярный полимер. Способ позволяет получать стабильные наночастицы серебра со специфическими свойствами, используя только биосовместимые реагенты. Наночастицы серебра могут быть применены в разработке антибактериальных материалов и нанотехнологиях.

Способ получения наночастиц серебра (НЧС) на основе супрамолекулярного полимера открывает широкие возможности управления их свойствами. Супрамолекулярные полимеры - это полимероподобные макромолекулярные структуры, полученные в результате ассоциации ионов, удерживаемых вместе межмолекулярными силами.

Технический результат настоящего изобретения заключается в получении наночастиц серебра со средним гидродинамическим радиусом 20 нм.

Технический результат достигается в два этапа.

Первый этап - смешение водного раствора нитрата серебра с концентрацией его в исходной смеси от 0,001М до 0,02М с водным раствором L-цистеина, таким образом, чтобы мольное соотношение серебра и L-цистеина находилось в диапазоне 1,25÷2,00. При этом образуется мутный раствор, который оставляют созревать в защищенном от света месте при температуре от 15 до 55°C до визуальной прозрачности. Созревание происходит в течение от 20 минут до двух суток (от 0,35 часа до 48,00 часов), в зависимости от концентрации исходных компонентов, их мольного соотношения и температуры. В результате получают прозрачный вязкий раствор супрамолекулярного геля светло-желтого цвета. Методика его синтеза соответствует патенту РФ № 2423384 от 10.07.2011.

В ультрафиолетовом спектре полученного раствора наблюдается появление двух слабых полос поглощения: в области 305 нм и 389 нм (Фиг.1).

Относительная вязкость полученного раствора находится в пределах от 1,1 до 2,5, в зависимости от концентрации исходных компонентов, их мольного соотношения и времени созревания раствора. Установлено, что для достижения результата необходим только L-цистеин высокой степени чистоты (не менее 99%).

Второй этап предполагает смешение водного раствора супрамолекулярного полимера на основе нитрата серебра и L-цистеина с водным раствором борогидрида натрия при постоянном перемешивании. Мольное соотношение серебра и борогидрида натрия должно составлять 0,4. При этом образуется красно-коричневый раствор с низкой вязкостью.

В ультрафиолетовом спектре полученного раствора имеются полосы поглощения в диапазоне от 390 до 500 нм, соответствующие явлению плазмонного резонанса на металлических наночастицах серебра или их агрегатах (Фиг.2).

Исследованием уровня техники установлено, что способов получения наночастиц серебра химическим восстановлением борогидридом натрия из водного раствора супрамолекулярного полимера на основе нитрата серебра и L-цистеина не обнаруживается.

Сущность изобретения заключается в следующем.

Водный раствор супрамолекулярного полимера (L-цистеин серебряный раствор) на основе L-цистеина и нитрата серебра представляет собой раствор полимероподобного супрамолекулярного соединения, построенного из молекул меркаптида серебра и ионов серебра, с формированием линейных цепочек со связями серебро-сера: -Ag-S-Ag-S-Ag-S-.

Авторами впервые было установлено, что указанный раствор может использоваться как исходный реагент для синтеза седиментационно и частично агрегативно устойчивых наночастиц серебра со специфическими свойствами. Ионы серебра, включенные в супрамолекулярный полимер, восстанавливаются борогидридом натрия до металлического серебра. Размер синтезируемых наночастиц серебра детерминируется размером супрамолекул, их концентрацией, температурой проведения процесса и другими факторами. Молекулы цистеина, входившие в состав супрамолекулярного полимера, связываются с поверхностью получаемых наночастиц по тиольной группе. Тем самым наночастицам придается седиментационная и частично-агрегативная устойчивость. Срок хранения растворов наночастиц, полученных данным способом, без значительного изменения их свойств, - около 6 месяцев.

Образование фракций наночастиц размером от 10 до 50 нм в растворе установлено методом динамического светорассеяния. Измерение интенсивности ДСР выполнено на анализаторе Zetasizer ZS (Malvern Instruments Ltd., Великобритания) с He-Ne - лазером ( =633 нм) мощностью 4 мВт. Все измерения осуществлялись при 25°C. На Фиг.3 представлены данные динамического светорассеяния, которые свидетельствуют о наличии в данном растворе наночастиц со средним гидродинамическим радиусом порядка 20 нм. Фракция наночастиц с большим размером представлена обратимыми агрегатами из первой фракции.

Методом просвечивающей электронной микроскопии установлено присутствие в растворе наночастиц размером от 10 до 50 нм, рефлексы которых на электронограмме образца соответствуют присутствию металлического серебра.

На Фиг.4 представлены электронно-микроскопический снимок и электронограмма высушенного на подложке из формвара образца раствора наночастиц серебра, полученные на просвечивающем электронном микроскопе «LEO 912 АВ OMEGA» (Carl Zeiss, Германия).

В предложенном способе получения наночастиц используется биологически активное супрамолекулярное соединение на основе биосовместимой аминокислоты L-цистеина и нитрата серебра. Наночастицы серебра являются стабильным биологически активным продуктом, совместимым с полимерами медицинского назначения.

Антибактериальное действие катионов серебра объясняется тремя механизмами: вмешательством в перенос электронов, связыванием ДНК и взаимодействием с мембраной клетки. Наночастицы металлического серебра обладают антибактериальным действием благодаря их медленному окислению и высвобождению в окружающую среду катионов серебра. Этот фактор играет решающую роль в ряде случаев медицинского применения. Ионное серебро в высоких концентрациях обладает токсическим воздействием не только на прокариотические клетки бактерий, но и на эукариотические клетки организма пациента. Это вызывает определенные трудности с разовой дозировкой препарата. При использовании наночастиц серебра достижение минимально ингибирующих концентраций происходит постепенно (по мере окисления развитой поверхности наночастиц), и токсического действия на организм не наблюдается. Кроме того, существуют данные о большей чувствительности патогенных и условно патогенных грибков (например, Candida) именно к наночастицам серебра, которые разрушают клеточные мембраны и угнетают рост грибковых клеток. Таким образом, наночастицы серебра могут использоваться в тех случаях, когда нельзя по каким-то причинам повышать содержание ионов серебра. В предлагаемом нами способе получения наночастиц серебра существует возможность получения наночастиц с заранее заданным размером.

Изобретение поясняется графическими материалами (Фиг.1÷4).

Фиг.1. УФ спектры L-цистеин-серебряного раствора при разном его разбавлении: 1 - без разбавления, 2 - разбавление в 2 раза, 3 - разбавление в 8 раз (концентрации компонентов в неразбавленном растворе: C AgNO3 =0,0038М, C cys =0,0030М; толщина слоя 1 см).

Фиг.2. УФ спектры растворов наночастиц серебра, полученных при разном разбавлении исходного ЦСР: 1 - без разбавления, 2 - разбавление в 2 раза, 3 - разбавление в 8 раз (концентрации компонентов в неразбавленном растворе: C AgNO3 = 0,0038М, C cys =0,0030М; толщина слоя 1 мм).

Фиг.3. Распределение НЧС по размерам в образце, полученном при разбавлении исходного раствора супрамолекулярного полимера в 8 раз (концентрации компонентов в неразбавленном растворе: C AgNO3 =0,0038М, C cys =0,0030М).

Фиг.4. ПЭМ-изображение (а) и электронограмма (б) образца наночастиц полученного при разбавлении исходного раствора супрамолекулярного полимера в 2 раза (концентрации компонентов в неразбавленном растворе: C AgNO3 =0,0038M, C cys =0, 0030М).

Пример получения наночастиц серебра:

1. Растворяют 127,5 мг нитрата серебра в 25 мл дистиллированной воды.

2. Растворяют 90,8 мг L-цистеина в 25 мл дистиллированной воды.

3. К 25 мл раствора нитрата серебра приливают 155 мл дистиллированной воды и 20 мл раствора L-цистеина, смесь энергично перемешивают. Смесь оставляют созревать в защищенном от света месте на 10 часов при комнатной температуре.

4. К 50 мл полученного раствора приливают 50 мл дистиллированной воды и смесь энергично перемешивают. Получают разбавленный раствор супрамолекулярного полимера.

5. Растворяют 37,0 мг борогидрида натрия в 10 мл дистиллированной воды

6. К 100 мл разбавленного раствора супрамолекулярного полимера при перемешивании приливают по каплям (со скоростью 1 капля в секунду) 10 мл раствора борогидрида натрия. Перемешивание продолжают до прекращения заметного выделения пузырьков газа.

Таким образом заявляется способ получения наночастиц серебра, включающий приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125-10,04 М/л, смешивание полученных растворов при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00, выстаивание смеси при температуре 15÷55°C в течение 0,34÷48,00 часов в защищенном от света месте с получением раствора супрамолекулярного полимера, разбавление смеси водой в объемном соотношении 1:1, приготовление водного раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавление водного раствора борогидрида натрия в раствор сумолекулярного полимера при постоянном перемешивании.

Использование предлагаемого способа получения наночастиц серебра в областях, отличных от медицины, дает возможность стабилизировать коллоидные растворы металлического серебра с определенным, заранее заданным размером дисперсной фазы. Хотя непосредственный способ применения наночастиц серебра в таких областях не является объектом данного патентования, стоит отметить, что это могут быть такие приложения, как электронные и оптоэлектронные приборы и устройства, композитные материалы различного назначения, электропроводящие клеи, пленки.

Использование наночастиц серебра в качестве гетерогенных катализаторов применяется во многих процессах органического синтеза (например, в производстве формальдегида). При этом размер частиц определяет эффективность катализа: чем больше поверхность катализатора, тем активнее протекает каталитический процесс. Использование заявляемого способа получения наночастиц серебра позволит получать катализаторы двумя способами: получение наночастиц in situ (непосредственно в матрице носителя) и пропитка носителя коллоидным раствором наночастиц.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения наночастиц серебра, содержащий приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л, смешивание полученных растворов при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00, выстаивание смеси при температуре 15÷55°C в течение 0,34÷48,00 часов в защищенном от света месте с получением раствора супрамолекулярного полимера, разбавление смеси водой в объемном соотношении 1:1, приготовление водного раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавление водного раствора борогидрида натрия в раствор сумолекулярного полимера при постоянном перемешивании.

Собираюсь рассказать в этой статье о современной форме «серебряных» средств для здоровья, которая была разработана в 2011 году и называется структурированным серебром (наносеребром, серебром с наночастицами, nanoparticulate silver, NPS). По эффективности эта форма намного превосходит коллоидное серебро. Применяется против многих видов патогенов — вирусов, бактерий, грибков.
Немного информации, и потом к продукции на основе наносеребра.

Лечение серебром применяется уже многие века. Но его эффективность зависит от формы серебра и способа применения (ncbi ).

У серебра есть замечательная способность выборочно уничтожать патогенные бактерии, не причиняя вреда здоровым пробиотическим бактериям.
Молекулярная структура серебра позволяет остановить большинство бактерий от создания химических связей.
Бактерии, находящиеся в контакте с серебром, не могут размножаться и разрушаются.
Серебро настолько сильная вещь в обеспечении бактериальной защиты, что многие клиники и больницы используют хирургические инструменты на основе серебра, а также мебель с серебряным покрытием, чтобы ограничить распространение любой инфекции.

Поскольку серебро работает на молекулярном уровне, оно способно остановить многие супербактерии и бактериальные штаммы. Согласно Серебра, воздействию наносеребра поддаётся даже устойчивый к метициллину и всем антибиотикам Staphylococcus aureus, смертельный стафилококк.

Наночастицы серебра не метаболизируются в организме и не могут быть причиной аргирии (болезни, возникающей из-за накопления серебра в тканях). Надо сказать, что вопреки нападкам на коллоидные растворы, современные формы известных производителей имеют столь низкую концентрацию, что никаким накоплением солей серебра тоже не грозят, хотя по эффективности им не сравниться со структурированным серебром.

Как же работает серебро на атомно-молекулярном уровне.

1. Сначала рассмотрим атом (одноатомную молекулу) серебра в коллоидном растворе. На внешней орбите вращается один несбалансированный электрон, который отчаянно нуждается в балансе, и для этого он крадёт один электрон у оболочки бактерии, таким образом патоген погибает, а частица серебра уравновешена, нейтрализована, и выпадает из раствора, это значит, что каждая частица для одного «выстрела».

2.
Кристаллическая структура в новых препаратах наноструктурированного серебра является тетраэдрической, это показано на изображении в самом конце статьи. Такая модель «стреляет» как пулемёт, т.е. она крадёт электроны многократно, и частица серебра не выпадает в осадок. Этот раствор убивает 99,99% патогенов за 6 минут.

Также есть более развёрнутые ответы на четыре основных вопроса:

1. Почему само серебро антибактериальное?
2. Как серебро может убить «плохие бактерии», но не «хорошие бактерии»?
3. Как серебро воздействует на нормальные здоровые клетки?
4. Каким образом новые формы серебра превосходят старые формы?

Сразу ещё один вопрос — можно ли структурированное серебро при аутоиммунных заболеваниях.
Ответ положительный:
при ВИЧ
при ревматоидном артрите
— можно почитать об исследованиях по теме взаимодействия наночастиц серебра с иммунной системой. Наносеребро оказывает ингибирующее воздействие на выработку воспалительных цитокинов, это значит, что оно балансирует иммунитет, а не накручивает его.

Переходим к препаратам на основе структурированного серебра


Activz, Леденцы с натуральным серебром, 21 конфета, 3,4 унции (95 г)

Только три компонента — серебро, мёд манука и мятное масло. Пятёрочная штука, без промаха.
Помогает не только быстро вылечиться, но и не заболеть.

Конфетки живут в сумочке или в кармане, особенно при большой инфекционной нагрузке. Работают не только для горла, но и для полости рта. Сколько в день не пишут, но достаточно 1-3 шт.

А вот и вертикальный спрей с наночастицами серебра
Allergy Research Group, Argentyn 23, Vertical Spray, 2 fl oz (60 ml)
Отличный способ не заболеть — пшикнуть когда идёшь в люди, но самое главное, вернувшись домой — прополоскать рот и нос с солью (совет от меня) и попшикать серебром, никакого шанса заразе.
В бутылках у этого производителя тоже есть.

Activz, Заживляющий гель с серебром, 24 PPM, 4 жидких унций (118 мл)

Activz Silver Gel работает быстро, дольше и эффективнее, чем коллоидные и ионные препараты.
Этот «серебряный» гель можно смешивать с другими лосьонами или сыворотками, чтобы придать им дополнительные заживляющие свойства.
Стимулирует естественные процессы заживления.

American Biotech Labs, Silver Biotics, Поддержка иммунной системы , 16 жидких унций (472 мл)

Как использовать раствор структурированного серебра. Принимать на пустой желудок.

У них есть другая «серебряная» продукция, в том числе гель для проблемной кожи и заживляющие гели для ран у людей и животных, которые можно использовать вместе с жидкой формой


Жирный P.S.
Сейчас я всё быстренько усложню по своему обыкновению). Это касается только хронических инфекций.
Я писала об этом немного в статье о цистите, и буду писать в отдельной большой статье. Многие лекарства очень-очень хорошие – как то манноза или наносеребро. Но – хронические неизлечимые инфекции – пока ещё огромная проблема медицины нашего века, это даже не проблема науки, но медицины как системы.
Речь идёт о биоплёнках , это то, что делает хронические инфекции недосягаемыми для антибиотиков, клеток-киллеров иммунитета, а так же для серебра и других средств в одиночку.

«Было продемонстрировано, что биопленки участвуют в широком спектре хронических инфекций, включая синусит, средний отит, хроническую обструктивную болезнь легких (ХОБЛ), эндокардит, дебуцит и диабетические язвы, простатит, конъюнктивит, поверхностные кожные инфекции, инфекции дыхательных путей при кистозном фиброзе, вульвовагинит, инфекции мочевых путей и периодонтит. По оценкам, биопленки усложняют большинство бактериальных инфекций у людей.»

Исследования заявлены и описаны на ncbi – например
На них уйдёт много лет. Поэтому, если проблема стоит остро (а как она ещё может), предлагаю вот эту уважаемого доктора Рональда Хоффмана.
В статье он обращается в основном к докторам и говорит касательно хронических инфекций – гайморита, незаживающих ран и язв, устойчивых кандидозного вагинита и вагиноза, инфекции мочевых путей, хронического пародонтального заболевания и др. – что их лечение в это время должно быть импровизационным.

Доктор Хоффман приводит пример как в лечении незаживающих ран хорошие результаты давали повязки с гидрогелем, в который были добавлены ксилит, лактоферрин и серебро.
Против такого глобального врага работает применение обычного ксилита, лактоферрина, пиретрума и конечно – системных (протеолитических) ферментов. Все они способны подавлять и расщеплять биоплёнки, делая бактерии беззащитными перед действием серебра, антибиотиков и других натуральных или фармацевтических средств.

Вы можете, например, полоскать горло и носовые пазухи с серебром, ксилитом
и лактоферрином, вместе с тем пить ферменты или комплексные разрушители биоплёнок минимум за полчаса до еды (лучше за час), в этой в середине и в конце есть ссылки на эти препараты (лактоферрин, разрушитель биоплёнок и ферменты).

Протеолитические ферменты являются системными ферментами , это значит, что они не только участвуют в пищеварении как все прочие, но они необходимы всему телу, всем клеткам и тканям. Каждая клетка в организме использует эти ферменты для строительства, обслуживания и ремонта себя. Таким образом усвоенные ферменты добираются до взлома биоплёнок, т.е. расщепляют их как прочий мусор – слизь, фибрин, аллергены, токсины, факторы свёртывания крови. Системные ферменты всегда должны быть частью терапии хронических инфекций.

Просьба не забывать, что системные ферменты разжижают кровь, и если у вас есть противопоказания к разжижению крови или вы принимаете антикоагулянты – необходимо обсудить с врачом приём ферментов.

МЕДИЦИНА: О ФИЗИОЛОГИЧЕСКОМ ВОЗДЕЙСТВИИ НАНОСЕРЕБРА НА ОРГАНИЗМ ЧЕЛОВЕКА

Наночастицы серебра

Олег Мосин

Серебро – металл белого цвета, практически не изменяющийся под воздействием кислорода воздуха при комнатной температуре, однако из-за наличия в воздухе сероводорода со временем покрывается тёмным налётом сульфида серебра, который можно удалить механически, используя различные чистящие пасты или тонкий зубной порошок. Соляная, серная кислота и царская водка на серебро не действуют, поскольку на поверхности металла образуется защитная плёнка хлорида серебра AgCl. Серебро хорошо растворяется лишь в азотной кислоте с образованием растворимого нитрата серебра AgNO3 .

Бактерицидные свойства серебра известны с глубокой древности. Еще в Древней Индии с помощью этого металла обеззараживали воду, а персидский царь Кир хранил воду в серебряных сосудах. Историк древнего мира Геродот приводит сведения о том, что в V веке до нашей эры персидский царь Кир во время походов пользовался питьевой водой, сохраняемой в серебряных “священных сосудах”. В религиозных индусских книгах встречаются упоминания об обеззараживании воды путем кратковременного погружения в нее раскаленного серебра, либо в результате длительного контакта с этим металлом в обычных условиях.

В некоторых странах существовал обычай при освящении колодцев бросать в воду серебряные монеты, тем самым улучшая качество воды, а также хранить воду в серебряных чашах. Американские первооткрыватели, путешествуя, часто клали серебряный доллар в молоко, чтобы задержать его скисание.

  • Широкое распространение при лечении ран серебро получило во время Великой Отечественной войны . Серебряную воду применяли при лечении свищей и язв, образовавшихся в результате костного туберкулеза и туберкулеза лимфатических желез с распадом и нагноением. Результаты лечения, как правило, были положительные: язвы и свищи, не закрывавшиеся у некоторых больных несколько лет, несмотря на систематическое лечение кварцем, рыбьим жиром, мазью Вишневского и другими препаратами, после применения серебряной воды полностью закрывались и заживали.

Пионером исследований в области серебра считают французского врача Бенье Креде , который в конце XIX века сообщил об успехах в лечении сепсиса ионами серебра. Продолжая исследования, он выяснил, что серебро в течение трех дней убивает дифтерийную палочку, в течение двух - стафилококки, а возбудитель тифа - за сутки.

В конце XIX столетия швейцарский ботаник ботаник Карл Негель установил, что причиной гибели клеток микроорганизмов является воздействие на них ионов серебра. Ионы серебра выступают в роли защитников, уничтожая болезнетворные бактерии, вирусы, грибки. Их действие распространяется более чем на 650 видов бактерий (для сравнения – спектр действия любого антибиотика 5–10 видов бактерий). Интересно, что полезные бактерии при этом не погибают, а значит не развивается дисбактериоз, столь частый спутник лечения антибиотиками .

При этом серебро не просто металл, способный убивать бактерии, но и микроэлемент, являющийся необходимой составной частью тканей любого живого организма. В суточном рационе человека должно содержаться в среднем 80 мкг серебра. При употреблении ионных растворов серебра не только уничтожаются болезнетворные бактерии и вирусы, но и активизируются обменные процессы в организме человека, повышается иммунитет.

В 1942 году англичанину Р. Бентону удалось остановить эпидемию холеры и дизентерии, свирепствовавшую на строительстве дороги Бирма - Ассам. Бентон наладил снабжение рабочих чистой питьевой водой, обеззараженной с помощью электролитического растворения серебра (концентрация серебра 0,01 мг/л).

Когда бактерицидные свойства серебра были изучены, оказалось, что решающую роль здесь играют положительно заряженные ионы серебра Ag+. Ионизация серебра повышает активность в водных растворах. Катионы серебра подавляют деятельность фермента, обеспечивающего кислородный обмен у простейших микроорганизмов болезнетворных бактерий, вирусов и грибков (порядка 700 видов патогенной «флоры» и «фауны»). Скорость уничтожения зависит от концентрации ионов серебра в растворе: так, кишечная палочка погибает через 3 мин при концентрации 1 мг/л, через 20 мин - при 0,5 мг/л, через 50 мин - при 0,2 мг/л, через 2 ч - при 0,05 мг/л. При этом обеззараживающая способность серебра выше, чем у карболовой кислоты, сулемы и даже таких сильных окислителей, как хлор, хлорная известь, гипохлорид натрия .

  • Серебро - не просто металл, но важный для организма микроэлемент, необходимый для нормального функционирования желез внутренней секреции, мозга и печени . Но серебро - тяжелый металл, и его насыщенные растворы не полезны человеку: предельно допустимая концентрация серебра - 0,05 мг/л. При приеме 2 г солей серебра возникают токсические явления, а при дозе в 10 г вероятен летальный исход. Кроме того, если превышать предельную дозу в течение нескольких месяцев, возможно постепенное накапливание металла в организме.

Высокая биологическая активность микроэлементов-металлов в организме связана, прежде всего, с участием их в синтезе некоторых ферментов, витаминов и гормонов. По данным А.И. Войнара , в суточном рационе человека в среднем должно содержаться 80 мкг ионов серебра. Установлено, что в организме животных и человека содержание серебра составляет 20 мкг на 100 г сухого вещества. Наиболее богаты серебром мозг, железы внутренней секреции, печень, почки и кости скелета.

  • Ионы серебра принимают участие в обменных процессах организма . В зависимости от концентрации его катионы могут как стимулировать, так и угнетать активность ряда ферментов. Под влиянием серебра в два раза усиливается интенсивность окислительного фосфорилирования в митохондриях головного мозга, а также увеличивается содержание нуклеиновых кислот, что улучшает функцию головного мозга.

При инкубации различных тканей в физиологическом растворе, содержащем 0,001 мкг катиона серебра, возрастает поглощение кислорода мозговой тканью на 24%, миокардом – на 20%, печенью – на 36%, почками – на 25%. Повышение концентрации ионов серебра до 0,01 мкг снижало степень поглощения кислорода клетками этих органов, что свидетельствует об участии катионов серебра в регуляции энергетического обмена.

В лаборатории вирусологии Киевского государственного университета проводились исследования по изучению физиологического действия серебра. Установлено, что дозы серебра 50; 200 и 1250 мкг/л оказывают благотворное влияние на экспериментальных животных. Крысы, которые пили воду, содержащую ионы серебра, прибавляли в весе и развивались быстрее, чем животные контрольной группы. С помощью спектрального анализа в печени экспериментальных животных было обнаружено 20 мкг серебра на 100 г сухой массы, что соответствовало нормальному содержанию серебра в печени крыс.

Этими сследованиями было доказано, что дозы серебра 50–250 мкг/л являются физиологическими и не оказывают вредного воздействия на организм при длительном применении. К такому же выводу пришли ряд исследователей, изучая влияние серебра, вводимого в дозах, значительно превышающих предельно допустимые, на органы и системы человека и животных. Так, патогистологические исследования подопытных животных, которые получали с питьевой водой серебро в дозах 20000–50000 мкг/л, показали, что при длительном введении в организм ионного серебра происходит накопление его в тканях организма. Однако отложение серебра в тканях не сопровождалось воспалительными и деструктивными изменениями внутренних органов.

  • Исследованиями А.А. Масленко показано, что длительное употребление человеком питьевой воды, содержащей 50 мкг/л серебра (уровень ПДК), не вызывает отклонений от нормы функции органов пищеварения. Не было обнаружено в сыворотке крови изменений активности ферментов, характеризующих функцию печени. Не выявлено также патологических сдвигов в состоянии других органов и систем человека и при употреблении в течении 15 суток воды, обработанной серебром в дозе 100 мкг/л, то есть в концентрациях, в два раза превышающих допустимые .

Следует подчеркнуть, что длительное применение больших доз серебра – концентрацией раствора 30 – 50 мг/л в течение 7–8 лет c лечебной целью, а также при работе с соединениями серебра в производственных условиях может привести к отложению серебра в коже и изменению окраски кожи – аргирии , профессиональной болезни ювелиров («цвет загара»), которая является следствием фотохимического восстановления ионов серебра. При обследовании ряда больных с явлениями аргирии не выявлено изменений в функциональном состоянии органов и систем, а также в биохимических процессах, происходящих в организме, более того у всех людей с признаками аргирии наблюдалась резистентность к большинству вирусных и бактериальных инфекций.

Большое влияние на развитие аргирии оказывает индивидуальная предрасположенность организма к серебру, качественные и количественные показатели иммунитета и другие факторы. Косвенным доказательством этого может служить факт, что дозы, которые могут приводить к аргирии, различны. В литературе имеются указания на то, что у некоторых людей даже при приеме больших доз серебра аргирия не возникает. По данным Вудворда Р.Л. и других исследователей, дозы серебра 50–200 мкг/л, исключают возможность аргирии.

  • При изучении действия препаратов серебра на организм человека отмечено его стимулирующее действие на кроветворные органы, проявляющееся в исчезновении молодых форм нейтрофилов, увеличении количества лимфоцитов и моноцитов, эритроцитов и гемоглобина, замедлении СОЭ .

В последние годы в научной литературе появились сведения о том, что серебро является мощным иммуномодулятором, сравнимым со стероидными гормонами. Установлено, что в зависимости от дозы, серебро может как стимулировать, так и подавлять фагоцитоз. Под влиянием серебра повышается количество иммуноглобулинов классов А, М, G, увеличивается процентное содержание абсолютного количества Т-лимфоцитов.

Таким образом, в свете современных представлений, серебро рассматривается как микроэлемент, необходимый для нормального функционирования внутренних органов и систем, а также как мощное средство, повышающее иммунитет и активно воздействующее на болезнетворные бактерии и вирусы. В концентрации 0,05–0,1мг/л серебро оказывает омолаживающее воздействие на кровь и благотворно влияет на протекание физиологических процессов в организме .

Установлено, что в зависимости от дозы, серебро может как стимулировать, так и подавлять фагоцитоз. Под влиянием серебра повышается количество иммуноглобулинов классов А, М, G, увеличивается процентное содержание абсолютного количества Т-лимфоцитов. В малых дозах оно оказывает омолаживающее действие на кровь и благотворно влияет на протекание физиологических процессов в организме. При этом отмечается стимуляция кроветворных органов, увеличивается число лимфоцитов и моноцитов, эритроцитов и процент гемоглобина, а также замедляется СОЕ.

Действие ионов серебра на микробную клетку

Основоположником научного изучения механизма действия серебра на микробную клетку является швейцарский ботаник Карл Негель , который в 80-е годы XIX века установил, что взаимодействие не самого металла, а его ионов с клетками микроорганизмов вызывает их гибель. Это явление он назвал олигодинамией (от греч. «олигос» – малый, следовый, и «динамос» – действие, т.е. действие следов). Ученый доказал, что серебро проявляет олигодинамическое действие только в растворенном (ионизированном) виде. В последующем его данные были подтверждены и другими исследователями.

  • Немецкий ученый Винцент, сравнивая активность некоторых металлов, установил, что наиболее сильным бактерицидным действием обладает серебро, меньшим – медь и золото. С.С.Боткин, а затем А.П. Виноградов, объяснили этот факт зависимостью биологических свойств микроэлементов от места, занимаемого ими в Периодической системе Д.И. Менделеева .

Так, дифтерийная палочка погибала на серебряной пластинке через три дня, на медной – через шесть дней, на золотой – через восемь. Стафилококк погибал на серебре через два дня, на меди через три, на золоте – через девять дней. Тифозная палочка на серебре и меди погибала через 18 ч, а на золоте – через шесть – семь дней.

Большой вклад в изучение антимикробных свойств серебряной воды, ее применения для обеззараживания питьевой воды и пищевых продуктов внесен академиком Л.А. Кульским . Его экспериментами, а позднее и работами других исследователей доказано, что именно ионы металлов и их диссоциированные соединения (вещества, способные в воде распадаться на ионы) вызывают гибель микроорганизмов. Во всех случаях при бактерицидном эффекте степень активности серебра тем больше, чем выше концентрация ионов серебра.

Сегодня наукой доказано, что серебро в ионном виде обладает бактерицидным, противовирусным, выраженным противогрибковым и антисептическим действием и служит высокоэффективным обеззараживающим средством в отношении патогенных микроорганизмов, вызывающих острые инфекции .

  • Эффект уничтожения бактерий препаратами серебра чрезвычайно велик. Он в 1750 раз сильнее действия той же концентрации карболовой кислоты и в 3,5 раза сильнее действия сулемы. Всего 1мг/л серебра в течении 30 минут вызывал полную инактивацию вирусов гриппа А, В, Митре и Сендай. Уже при концентрации 0,1 мг/л серебро обладает выраженным фунгицидным действием. При микробной нагрузке 100 000 клеток на один литр гибель грибов Candida albicans наступает через 30 минут после контакта с серебром. По данным академика АН УССР Кульского Л.А. действие серебряной воды при одинаковых концентрациях выше действия хлора, хлорной извести, гипохлорида натрия и других сильных окислителей.
  • Что самое интересное, при применении допустимых концентраций, серебряная вода, убивая всю патогенную и условно-патогенную флору организма, остаётся относительно безопасной для собственной полезной флоры организма (сапрофитов). Ещё один интересный факт: если при лечении инфекции, из-за образования антибиотико-устойчивых форм бактерий приходиться менять препарат каждый 5 дней, то к серебряной воде ни одна бактерия или вирус не образуют устойчивых форм. Серебряная вода также оказывает губительное действие и на антибиотико-устойчивые формы .

Установлено, что растворы серебра являются самым эффективным средством при непосредственном соприкосновении с поверхностями, гноящимися и воспалёнными вследствие бактериального заражения.

Результаты применения серебряной воды свидетельствуют об эффективности её действия при желудочно-кишечных заболеваниях, холециститах, инфекционных гепатитах, холангитах, панкреатитах, дуоденитах, любых кишечных инфекциях без опасения погубить собственную полезную микрофлору и вызвать дисбактериоз. С успехом лечится язвенная болезнь желудка и 12 п.к., так как уничтожаются бактерии хеликобактер – пилори и кампилобактер – пилори, постоянно живущие на слизистых оболочках желудка и кишечника и активно поддерживающие эрозивные и язвенные процессы в ЖКТ.

В.С. Брызгунов с соавтором выявили, что серебро обладает более мощным антимикробным эффектом, чем пенициллин, биомицин и другие антибиотики, и оказывает губительное действие на антибиотикоустойчивые штаммы бактерий. На золотистый стафилококк, вульгарный протей, синегнойную и кишечную палочки, представляющих особый интерес для клиницистов, ионы серебра оказывают различное противомикробное действие – от бактерицидного (способность убивать микробы) до бактериостатического (способность препятствовать размножению микробов). В отношении золотистого стафилококка и большинства кокков оно иногда значительно превосходит по своей выраженности действие антибиотиков.

  • Имеются данные, что чувствительность разных патогенных и непатогенных организмов к серебру неодинакова. Выявлено, что патогенная микрофлора намного более чувствительна к ионам серебра, чем непатогенная. Основываясь на этом факте, Ю.П.Мироненко, еще в 1971 году, разработал способ лечения дисбактериоза различного происхождения ионным раствором серебра (концентрация 500 мкг/л) методом полостного электрофореза, достигая при этом стойкого терапевтического эффекта.

Рядом исследователей установлено, что ионы серебра обладают выраженной способностью инактивировать вирусы осповакцины, гриппа штаммов А-1, В, некоторых энтеро- и аденовирусов, а также ингибировать вирус СПИДа и оказывают хороший терапевтический эффект при лечении вирусного заболевания Марбург, вирусного энтерита и чумы у собак. При этом выявлено большое преимущество терапии коллоидным серебром по сравнению со стандартной терапией. Однако в эксперименте Л.В. Григорьевой установлено, что для полной инактивации бактериофага кишечной палочки N163, вируса Коксаки серотипов А-5,А-7,А-14 необходима более высокая концентрация серебра (500–5000 мкг/л) нежели для эшерихий, сальмонелл, шигелл и других кишечных бактерий (100–200 мкг/л.) .

Среди многочисленных теорий, объясняющих механизм действия серебра на микроорганизмы, наиболее распространенной является адсорбционная теория, согласно которой клетка теряет жизнеспособность в результате взаимодействия электростатических сил, возникающих между клетками бактерий, имеющих отрицательный заряд, и положительно заряженными ионами серебра при адсорбции последних бактериальной клеткой.

  • В общих чертах механизм борьбы серебра с одноклеточными (бактериями) и бесклеточными микроорганизмами (вирусами) представляет следующее: серебро реагирует с клеточной мембраной бактерии, которая представляет собой структуру из особых белков (пептидогликанов), соединенных аминокислотами для обеспечения механической прочности и стабильности. Серебро взаимодействует с внешними пептидогликанами, блокируя их способность передавать кислород внутрь клетки бактерии, что приводит к «удушью» микроорганизма и его гибели .

Некоторые исследователи, объясняя механизм воздействия серебра на клетку, особое значение придают физико-химическим процессам. В частности окислению протоплазмы бактерий и ее разрушению кислородом, растворенным в воде, причем серебро играет роль катализатора. Вораз и Тоферн (1957) объясняли антимикробное олигодинамическое действие серебра выведением из строя ферментов, содержащих SH- и СООН- группы, а Тонли K., Вилсон H. – нарушением ее осмотического равновесия .

Имеются данные, свидетельствующие об образовании комплексов нуклеиновых кислот с тяжелыми металлами, вследствие чего нарушается стабильность ДНК и, соответственно, жизнеспособность бактерий.

  • Существует также мнение, что серебро не оказывает прямого воздействия на ДНК клеток, а действует косвенно, увеличивая количество внутриклеточных свободных радикалов, которые снижают концентрацию внутриклеточных активных соединений кислорода.

Также допускают, что одной из причин широкого противомикробного действия ионов серебра является ингибирование транс-мембранного транспорта Nа+ и Cа++, вызываемая серебром.

Таким образом, механизм действия серебра на микробную клетку в свете современных данных заключается в том, что ионы серебра сорбируются клеточной оболочкой, которая выполняет защитную функцию. Клетка остается жизнеспособной, но при этом нарушаются некоторые ее функции, например деление (бактериостатический эффект). Как только на поверхности микробной клетки сорбируется серебро, оно проникает внутрь клетки и ингибирует ферменты дыхательной цепи, а также разобщает процессы окисления и окислительного фосфорилирования в микробных клетках, в результате чего клетка гибнет.

Особый интерес представляет действие ионов серебра на клетки макроорганизма. Обнаружено, что при инкубации костного мозга мышей и микроорганизмов в растворе, содержащем ионы серебра, морфология эритроцитов и лейкоцитов оставалась неизмененной, тогда как микроорганизмы полностью уничтожались .

Мышиные клетки под воздействием ионов серебра округлялись, но не разрушались, причем их оболочки не претерпевали изменений. В последующем эти клетки размножались, сохраняя нормальную клеточную структуру и способность к делению и размножению. Данные исследования свидетельствуют об отсутствии повреждающего действия ионного серебра для клеток макроорганизма, в отличие от микроорганизмов.

Коллоидное наносеребро

Изучение целительного действия коллоидного серебра началось со второй половины XIX века после открытия в 70-х годах немецким гинекологом Карлом Креде мощного антигонобленорейного эффекта у 1% раствора азотнокислого серебра. Это открытие позволило ликвидировать в родильных домах Германии гнойные гонорейные воспаления глаз у новорожденных. Фактически с этого момента началась новая эпоха в учении о профилактике опасных бактериальных инфекций.

23 августа 1897 г. немецкий хирург Бенне Креде , продолжив исследования своего отца, доложил на ХII Международном съезде врачей в Москве о широких возможностях применения препаратов серебра в гнойной хирургии и о хороших результатах лечения септической инфекции внутривенным их введением. Тогда же Б. Креде совместно с химиками предложил препараты, содержащие серебро в неионизированном состоянии: в виде коллоидных частиц металлического серебра (препарат колларгол) и золя окиси серебра (препарат протаргол), модификации которых прослужили в медицине более ста лет. В отличие от ранее применяемых солей серебра они не обладали прижигающим эффектом.

  • В России коллоидное серебро также получило высокую оценку врачей, что способствовало его активному использованию в военно-полевой хирургии на полях русско-японской войны 1904 г.

Серебро в форме внутривенного введения с успехом применялось при лечении септических артритов, ревматизма, ревматических эндокардитов, ревматоидного артрита, бронхиальной астмы, гриппа, острых респираторных заболеваний, бронхита, пневмоний, гнойных септических заболеваний, бруцеллеза, внутрь – при лечении гастритов, анастомозитов и гастродуоденальных язв, наружно – при лечении венерических заболеваний, гнойных ран и ожогов.

Широкий спектр противомикробного действия серебра, отсутствие устойчивости к нему у большинства патогенных микроорганизмов, низкая токсичность, отсутствие в литературе данных об аллергенных свойствах серебра, а также хорошая переносимость больными – способствовали повышенному интересу к серебру во многих странах мира .

  • В 1910 г. фирма «Гейден» , обобщив опыт практического применения серебра в медицине, издала аннотационный обзор, посвященный методике лечения различных инфекционных заболеваний: абсцессов, брюшного тифа, возвратного тифа, воспаления легких, придаточных пазух носа, среднего уха, гингивита, гонококкового сепсиса, дифтерийной жабы, дизентерии, кератита, коньюнктивита, лепры, мягкого шанкра, мастита, менингита, эпилепсии, пиемии, рожистого воспаления, сибирской язвы, сифилитических язв, спинной сухотки, острого суставного ревматизма, трахомы, фарингита, фурункулеза, цистита, эндокардита, эндометрита, хореи, эпидидимита, язвы роговой оболочки.

С открытием антибиотиков и сульфаниламидов интерес к препаратам серебра несколько снизился. Но в последнее время противомикробные свойства серебра вновь стали привлекать к себе внимание. Это связано с ростом аллергических осложнений антибактериальной терапии, токсическим действием антибиотиков на внутренние органы и подавлением иммунитета, возникновением грибкового поражения дыхательных путей и дисбактериоза после длительной антибактериальной терапии, а также появлением устойчивых штаммов возбудителей к используемым антибиотикам.

  • Повышенный интерес к серебру возник вновь в связи с выявленным его действием в организме как микроэлемента, необходимого для нормального функционирования органов и систем, иммунокорригирующими, а также мощными антибактериальными и противовирусными свойствами .

Эффективность бактерицидного действия коллоидного серебра объясняется способностью подавлять работу фермента, с помощью которого обеспечивается кислородный обмен у простейших организмов. Поэтому чужеродные простейшие микроорганизмы гибнут в присутствии ионов серебра из-за нарушения снабжения кислородом, необходимого для их жизнедеятельности.

  • Современные исследования действия коллоидных ионов серебра показали, что они обладают выраженной способностью обезвреживать вирусы осповакцины, некоторые штаммы вируса гриппа, энтеро- и аденовирусов. К тому же они оказывают хороший терапевтический эффект при лечении вирусного энтерита и чумы у собак. При этом выявлено преимущество терапии коллоидным серебром по сравнению со стандартной терапией .
  • Отмечено благотворное действие коллоидных ионов серебра на заживление трофических язв, развивающихся при нарушении кровообращения нижних конечностей. Ни в одном случае не было отмечено побочных эффектов лечения серебром.

Сейчас одна из быстро развивающихся областей современной нанотехнологии – создание и использование наноразмерных частиц различным материалов. Наноматериал, уже сегодня находящий применение в различных коммерческих продуктах – НАНОСЕРЕБРО .

Как известно, серебро – самый сильный естественный антибиотик из существующих на земле. Доказано, что серебро способно уничтожить более чем 650 видов бактерий, поэтому оно используется человеком для уничтожения различных микроорганизмов на протяжении тысячелетий, что свидетельствует о его стабильном антибиотическом эффекте.

  • Коллоидное наносеребро – продукт, состоящий из микроскопических наночастиц серебра, взвешенных в деминерализованной и деионизированной воде. Этот продукт высоких научных технологий производится электролитическим методом .

Типичные наночастицы серебра имеют размеры 25 нм. Они имеют чрезвычайно большую удельную площадь поверхности, что увеличивает область контакта серебра с бактериями или вирусами, значительно улучшая его бактерицидные действия. Таким образом, применение серебра в виде наночастиц позволяет в сотни раз снизить концентрацию серебра с сохранением всех бактерицидных свойств.

  • Бактерицидная добавка на основе наночастиц серебра является одним из последних достижений отечественной науки в области нанобиотехнологий .

Действие серебра специфично не по инфекции (как у антибиотиков), а по клеточной структуре. Любая клетка без химически устойчивой стенки (такое клеточное строение имеют бактерии и другие организмы без клеточной стенки, например, внеклеточные вирусы) подвержена воздействию серебра. Поскольку клетки млекопитающих имеют мембрану совершенно другого типа (не содержащую пептидогликанов), серебро никаким образом не действует на них.

  • В связи со способностью особым образом модифицированных наночастиц серебра длительное время сохранять бактерицидные свойства, рационально использовать наносеребро не в качестве дезинфицирующих средств частого применения, а добавлять в краски, лаки и другие материалы, что позволяет экономить деньги, время и трудозатраты.

Ведущей российской компанией по исследованию свойств наносеребра и использованию его в лакокрасочной продукции является ООО «НПО ФАЛЬКО» .

Водоэмульсионные краски и эмали с наносеребром серии «ЭКОБИО» были исследованы на сильнодействующих штаммах бактерий: сальмонелла, палочка Коха, стафилококк, листерия, энтерококк т.д. В результате проведенных исследований была доказана их высокая эффективность – при попадании на поверхность, покрытую такой краской, концентрация бактерий сразу же снижается на 0,5–2 порядка, а полная гибель колонии происходит через 2 часа.

  • В исследовании свойств красок принимали участие: Российская Академия медицинских наук, Научно-исследовательский институт эпидемиологии и микробиологии им. Н.Ф. Гамалеи, Институт электрохимии им. А.П. Фрумкина и ООО «НПО ФАЛЬКО» .

В наноразмерном диапазоне практически любой материал проявляет уникальные свойства и особенно такое металл как серебро. Ионы серебра обладают антисептической активностью. Значительно более высокой активностью обладает раствор наночастиц серебра. Коллоидное серебро – естественный антибиотик, разрешенный к применению в США Федеральной комиссией по питанию и медикаментам еще в 1920 году. Сотрудник Администрации по пищевым продуктам и лекарственным препаратам (FDA) США Гарольд Дэвис в письме от 13.09.1991 года сообщал, что коллоидное серебро, используемое на рынке США, прошло апробацию еще в 1938 году. Если обработать раствором коллоидного серебра бинт и приложить его к гнойной ране, воспаление пройдет и рана заживет быстрее, чем с использованием обычных антисептиков.

Недавно американские учёные проследили транспорт отдельной наночастицы серебра в эмбрионе рыбки – полосатого данио и исследовали влияние наночастиц серебра на раннее эмбриональное развитие .

Для этого были использованы высокоочищенные и устойчивые наночастицы и оптика высокого разрешения для наблюдения за их положением внутри эмбриона. Было установлено, что отдельная наночастица Ag (5-46 нм диаметром) транспортируется внутрь эмбриона через каналы пор хориона с помощью броуновского движения (а не активным транспортом) с коэффициентом диффузии внутри канала (3×10−9 см2/с), что в ~26 раз ниже чем в яйце (7,7×10−8 см2/с).

Ученые наблюдали за наночастицами серебра внутри эмбрионов на разных стадиях их развития: развитом, деформированном и мертвом. По результатам наблюдений было показано, что биологическая совместимость и токсичность наночастиц серебра сильно зависят от дозы наночастиц с критической концентрацией 0,19 нм. Скорости распространения и накопления наночастиц в эмбрионах, вероятно, ответственны за степень токсичности наночастиц.

В отличие от других методов исследования, отдельная наночастица может быть непосредственно отображена в развивающихся эмбрионах в нанометровом разрешении. Этот метод предлагает новые возможности исследовать события в реальном времени, приводящие к отклонениям в развитии эмбрионов .

Физические свойства наночастиц серебра отличаются от свойств того же серебра (например, уменьшение размеров частицы приводит к уменьшению ее температуры плавления). Технологи научились изготавливать наночастицы различных размеров, формы и химического состава. А вот контролировать число и тип дефектов в наночастицах они пока не умеют. Поэтому в вопросе о влиянии дефектов на характеристики наночастиц остается много нерешённых вопросов. Между тем известно, что наличие дефектов может приводить к весьма существенному изменению свойств наночастиц.

  • Учёные Университета Мэриланд (University of Maryland, США) разработали технологию, которая позволяет изготавливать наночастицы серебра, имеющие одинаковый размер, но при этом являющиеся либо монокристаллическими, либо содержащими большое количество двойников – областей с различной ориентацией кристаллографических осей. Границы раздела между такими областями являются дефектами особого рода (так называемыми дефектами двойникования). Эта технология основана на использовании для синтеза наночастиц различных полимерных предшественников – трифенилфосфина серебра (PPh3)33Ag-R с разными функциональными группами R = Cl, и R = NO3. Если при R = NO3) из зародышей вырастают двойникованные НЧ, то при R = Cl – бездвойниковые. Механизм образования наночастиц серебра со специфической особенностью ионов Cl блокировать образование двойников. При этом средний размер наночастиц составил 10.5 нм.
  • Исследования показали, что физико-химические свойства этих двух типов наночастиц существенно различаются . Например, при взаимодействии с селеном из бездвойниковых наночастиц получались полые наночастицы Ag2Se, а из двойникованных – сплошные однородные наночастицы. Это объясняется тем, что различие коэффициентов диффузии атомов Ag и Se по кристаллической решетке способствует формированию вакансий (скопление которых в итоге и образует полость внутри НЧ), тогда как атомы Se, перемещающиеся не по решетке, а по границам двойников, легко проникают в разделенные этими границами области Ag, в результате чего образуется однородная наночастицы Ag2Se. В двойникованных наночастицах имеет место гораздо более быстрое охлаждение электронной подсистемы после воздействия лазерного импульса (вследствие передачи энергии решетке). Это говорит о том, что границы двойников усиливают электрон-фононное взаимодействие, которое можно регулировать путем изменения концентрации дефектов в наночастицах.
  • Отечественный концерн «Наноиндустрия» разработал технологию производства наночастиц серебра, стабильных в растворах и в адсорбированном состоянии . Получаемые препараты обладают широким спектром противомикробного действия. Таким образом, появилась возможность создания целой гаммы продуктов с антимикробными свойствами при незначительном изменении технологического процесса производителями существующей продукции.

Наночастицы серебра могут быть использованы для модификации традиционных и создания новых материалов, покрытий, дезинфицирующих и моющих средств (в том числе зубных и чистящих паст, стиральных порошков, мыла), косметики. Покрытия и материалы (композитные, текстильные, лакокрасочные, углеродные и другие), модифицированные наночастицами серебра, могут быть использованы в качестве профилактических антимикробных средств защиты в местах, где возрастает опасность распространения инфекций: на транспорте, на предприятиях общественного питания, в сельскохозяйственных и животноводческих помещениях, в детских, спортивных, медицинских учреждениях .

  • Наночастицы серебра можно использовать для очистки воды и уничтожения болезнетворных микроорганизмов в фильтрах систем кондиционирования воздуха, в бассейнах, душах и других подобных местах массового посещения. При помощи установки «УМКА» удается рассмотреть поверхность DVD. Выпускается аналогичная продукция и за рубежом. Одна из фирм производит покрытия с серебряными наночастицами для лечения хронических воспалений и открытых ран.

Коллоидное серебро является безопасным и самым мощным для организма человека натуральным антисептиком, подавляющим более 700 видов болезнетворных микроорганизмов, среди которых стафилококки, стрептококки, бактерии дизентерии, брюшного тифа и др.

Американские исследования (по данным Сайенс Дайджест) показали, что серебро убивает вредные для организма микробы, включая кишечную палочку. Также был использован раствор коллоидного серебра для перевязки ран, распылении при тонзиллитах, в качестве влажной повязки для лечения ожогов и ссадин. Во всех случаях был отмечен хорошими терапевтический эффект.

  • В медицинском центре Нью-Йорского Университета, в отделении Ортопедии, была проведена работа по исследованию действия ионов серебра у больных с послеоперационными инфекционными осложнениями .

Из отчета по работе:

«Для 12 из 14 пациентов лечение было признано удачным, и у всех 14 лечение привело к несомненному уменьшению бактериальной флоры в ране, что показано прямым подсчетом колонии. Ни в одном случае не проявлялось нежелательных последствий лечения серебром». Соединения серебра применяются для лечения 70% случаев ожогов в США .

Интересен тот факт, что более половины авиакомпаний мира используют воду, обработанную серебром, как способ защиты пассажиров от инфекций, таких, как дизентерия. Во многих странах коллоидные ионы серебра используются для дезинфекции воды в бассейнах.

В Швейцарии широко применяют серебряные фильтры для воды в домах и офисах. На Международной Космической Станции употребляется только серебряная вода.

Приготовление серебряной воды

Приготовить серебряную воду в домашних условиях непросто. Если настаивать воду в серебряном сосуде, эффект будет более значительным, чем погружение в воду серебряных предметов.

В настоящее время серебряную воду производят в специальных электрических приборах – ионаторах. Ее также можно получить с помощью установок “Пингвин”, “Дельфин”, “Невотон”, “Георгий” и др. Как правило, эти приборы содержат и фильтр из активированного угля для улавливания вредных примесей.

Принцип действия ионатора серебра основан на электролитическом методе – пропускании постоянного тока через погруженные в воду серебряные (или серебряно-медные) электроды. При этом серебряный электрод (анод), растворяясь, насыщает воду ионами серебра. Концентрация полученного раствора при заданной силе тока зависит от времени работы источника тока и объема обрабатываемой воды .

При включении ионатора в воду начинают выделяться ионы серебра. Спустя некоторое время количество ионов достигает своего предела – точки насыщения и ионизация прекращается сама по себе. Максимальное количество серебра в растворе не может превысить концентраций допустимых для питьевой воды.

Если подобрать грамотно ионатор, то остаточное содержание растворённого в воде серебра не превысит предельной дозы 10–4…10–5 мг/л (при этом в контактном слое серебрения воды концентрации могут достигать значения 0,015 мг/л), что позволяет осуществлять одновременно бактерицидную и бактериостатическую обработку воды. В настоящее время созданы безопасные установки и технологии серебрения воды. На базе них можно получать гарантированно чистую питьевую воду без хлора и без бактерий. Созданы также системы дезинфекции воды методом серебрения для бассейнов.

Современные ионаторы позволяют получать два вида серебряной воды:

  • ПИТЬЕВАЯ – вода, в которой концентрация ионов серебра составляет 35 мкг/литр. Такая вода по санитарным нормам разрешена для употребления в пищу (СанПиН 2.1.4.539–96 допускает содержание серебра в питьевой воде до 50 мкг/литр). Врачи рекомендуют регулярно употреблять такую воду как просто для питья, так с целью профилактики и лечения целого ряда заболеваний. В первую очередь заболеваний желудочно-кишечного тракта. Также питьевая серебряная вода используется для приготовления пищи, для лучшего сохранения домашних заготовок (маринадов, варений и солений). Очень хорошо обрабатывать ею детские игрушки и посуду для защиты их от бактерий.
  • КОНЦЕНТРАТ – вода, в которой концентрация ионов серебра составляет 10 000 мкг/литр. Этой водой можно пользоваться для ингаляций при бронхо-легочных заболеваниях, а также в косметических целях для умывания, для полива растений и их семян, для мытья фруктов и овощей.

Серебряная вода применяется:

  • в хирургической практике (при поражении костей, мышц, суставов, лимфатических узлов и других органов, обусловленном стрепто-стафило-пневмококковой инфекцией, туберкулезной палочкой и др.)
  • в глазной практике (при конъюнктивите, блефарите, кератите, воспалении слезного мешка и других воспалительных процессах)
  • в ЛОР-практике (при поражении наружного слухового прохода, воспалении среднего уха, мастоидите, фарингите, ларингите, гайморите, тонзиллите и рините, а также при различных формах ангины и гриппозных эпидемиях)
  • в педиатрии (наружное применение серебра (серебряной воды), дезинфекция воды для купания детей, дерматозы, детская экзема, ожоги).
  • в практике внутренних заболеваний (при лечении язвы желудка и двенадцатиперстной кишки, хронического гиперацидного гастрита, сопровождающихся изжогами, а также при лечении секреторных неврозов с увеличенным выделением желудочного сока, энтерита и колита, при эндокринологических заболеваниях и нарушении обмена веществ – сахарная болезнь, диатезы)
  • в практике инфекционных заболеваний (при лечении дизентерии, брюшного тифа, паратифа, скарлатины, дифтерии и др.)
  • в акушерско-гинекологической практике (при лечении различных воспалительных процессов слизистой оболочки гинекологической сферы и трещин сосков)
  • в практике кожных заболеваний (при лечении фурункулеза и грибковых поражений кожи)
  • в стоматологической практике (при лечении афтозноульцерозного стоматита, гингивита и других заболеваний полости рта)
  • наружное применение (гнойные раны, гнойничковые заболевания кожи, ожоги, дерматозы, экзема, вульвагиниты, геморрой).
  • бытовое применение серебра (серебряной воды) (консервирование напитков, соков, компотов, обеззараживание питьевой воды в эпидемиологически неблагоприятных районах, замачивание семян перед посадкой (на 23 часа), полив комнатных растений (для обеззараживания земли от микроорганизмов, плесени, грибков), рекомендуется поливать в течение одной недели с 23 недельным перерывом, длительное (до 23 недель) сохранение срезанных садовых цветов, дезинфекция посуды, овощей, фруктов, дезинфекция нательного и постельного белья (путем замачивания на 23 часа), раковин, ванн, санузлов.

Результаты лечения серебряной водой свидетельствуют об эффективности применения ее при лечении желудочно-кишечных заболеваний, холециститов, инфекционных гепатитов, холангитов, панкреатитов, дуоденитов, любых кишечных инфекциях без опасения погубить собственную полезную микрофлору и вызвать дисбактериоз, воспалительных процессах зева, носа, глаз, поверхностных язв и ран обыкновенных и вызванных туберкулезным процессом.

  • Серебром с успехом лечится язвенная болезнь желудка и 12 п.к., так как уничтожаются бактерии, поддерживающие язвенный процесс.
  • Ионы серебра нашли применение при лечении хронического вазоматорно-аллергического ринита и синусита.
  • Успешно применяется серебро в дерматологии и венерологии. Она используется в качестве наружного средства при лечении дерматозов вирусного, дрожжевого, стрепто-стафилококкового и трофического происхождения.
  • Лечение термических ожогов повязками, смоченными серебряной водой по мнению учёных не имеет себе равных по эффективности. Важным свойством этого метода является его абсолютная безболезненность, что чрезвычайно важно при лечении больных с тяжелыми ожогами.
  • Применение серебряной воды при терапии острых и хронических пневмоний, бронхитов (использование через ингаляции), приводит к выздоровлению даже в тяжелых случаях и в короткие сроки, когда не справляются комбинации из нескольких антибиотиков.
  • Орошение и аппликации полости рта для лечения язвенного гингивостоматита, длительно незаживающих язв, острого стоматита, грибковых стоматитов, воспалительно-дистрофической формы парадонтоза позволяют оценить чрезвычайную эффективность препарата.
  • Грипп лечится с помощью ингаляций и промываний полости носа, при этом срок лечения сокращается до 2-х дней и не фиксируются тяжелые реакции организма.

Серебряную воду применяли при лечении желудочно-кишечных заболеваний в клинике Киевского медицинского института, а при воспалительных процессах зева, катаральных ангинах – в Первой поликлинике г. Киева.

  • В Уфимском республиканском тубдиспансере серебряную воду применяли при лечении свищей и язв, образовавшихся в результате костного туберкулеза и туберкулеза лимфатических желез с распадом и нагноением. Результаты лечения, как правило, были положительные: язвы и свищи, не закрывавшиеся у некоторых больных несколько лет, несмотря на систематическое лечение кварцем, рыбьим жиром, мазью Вишневского и другими препаратами, после применения серебряной воды на протяжении двух – пяти месяцев полностью закрывались и заживали.
  • Питьевые профилактические растворы серебра улучшают состав крови, удерживают кальций фосфор в крови в тонкодисперсном состоянии, предупреждают отложение солей на стенках сосудов и суставов, повышают иммунитет организма, предупреждают инфекционные заболевания.
  • Концентрация – 0,1 мг/л. Пить вместо обычной воды в течение б-ти месяцев. Затем перерыв 3 месяца и т.д.
  • Для профилактики внутренних болезней концентрация: 0,1 –0,5 мг/л. Пить по 100 гр. раствора 3–4 раза в день за 20–30 минут до еды. Курс – 3 месяца.
  • Для лечения внутренних болезней применяется концентрация 0,5 – 5,0 мг/л. По 100 гр. раствора 3–4 раза в день за 20 – 3 минут до еды. Курс – 3 месяца. При пищевом отравлении, метеоризме, при послеоперационных рецидивах в почках, печени, кишечнике (свищи). При тяжелых формах этих заболеваний – концентрация раствора увеличивается до 5,0 – 10,0 мг/л.
  • При лечении язвенной болезни желудка и двенадцатиперстной кишки, хронических гипо и гипер-ацидных гастритов, энтеритов, холецистита, эндокринных заболеваний, диабета, диатеза, экзем. Предупреждает развитие травматического сепсиса. Первые 10 дней концентрация – 10 мг/л; следующие 3 недели – 5 мг/л.
  • При лечении инфекционных заболеваний: холеры, чумы, брюшного тифа, паратифа, дизентерии, скарлатины, дифтерии, гепатита «А» и других. При тяжелых формах этих заболеваний – концентрация раствора увеличивается до 10 – 15,0 мг/л.
  • Также серебряная вода применяется для дезинфекции воды неизвестного происхождения (речная, болотная и т.д.). Концентрация – 0,1 мг/л – 4 часа и 0,2мг/л – 2 часа выдержки.
  • Добавление серебряной воды в лекарственные настои, молоко, соки продлевает срок их хранения в несколько раз.
  • Профилактика – перед и во время эпидемий гриппа, в периоды сильных стрессов. Пить для профилактики за 20 – 30 минут до еды.

Приготовление растворов серебряной воды Ag+ удобно и просто производить из имеющегося в продаже концентрата раствора коллоидного серебра – 35 мг/л. Из него можно приготовить серебряную воду любой концентрации, используя имеющиеся под рукой кухонные принадлежности.

На 100 г воды На 1 литр воды

1 чайная ложка (3 мл) – 1,0 мг/л 1 чайная ложка (3 мл) – 0,1 мг/л

1 десертная ложка (6 мл) – 2,0 мг/л 1 десертная ложка (6 мл) – 0,2 мг/л

1 столовая ложка (9 мл) – 3,0 мг/л 1 столовая ложка (9 мл) – 0,3 мг/л

  • Следует учесть, что для употребления внутрь серебряная вода разводится в сырой фильтрованной воде комнатной температуры, а не в кипячёной.

Содержание в питьевой воде серебра регламентируется СанПиН 2.1.4.1074–01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» (содержание в воде серебра не более 0,05 мг/л) и СанПин 2.1.4.1116 – 02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» (содержание в воде серебра не более 0,025 мг/л). Лимитирующий признак вредности вещества, по которому установлен норматив – санитарно-токсикологический. Равноценный класс вредности имеют растворённые в воде никель (Ni) и хром (Cr6+).

Для бактерицидного действия серебра требуются достаточно большие концентрации (около 0,015 мг/л, а при малых концентрациях (10–4…10–6 мг/л) оно оказывает только бактериостатическое действие, т.е. останавливает рост бактерий, не убивая их. Однако спорообразующие разновидности микроорганизмов к серебру практически нечувствительны.

  • Все эти свойства ограничивают применение серебра. Оно может быть уместно только в целях сохранения исходно чистой воды для длительного хранения (например, на космических кораблях или при розливе бутилированной питьевой воды). Часто используются осеребрение фильтров на основе активированного угля. Это делается с целью предотвратить обрастание фильтра микроорганизмами, т.к. отфильтрованные органические вещества являются хорошей питательной средой для многих бактерий.

Хранение концентрата коллоидного серебра производится в светонепроницаемой посуде в тёмном месте. Перед употреблением бутылку с концентратом необходимо несколько раз сильно встряхнуть, т.к. ионы серебра электризуются стеклом.

  • Однако, без надобности пить серебряную воду не следует. Серебро – тяжелый металл, имеющий высокую степень опасности для здоровья (в одном ряду со свинцом, кобальтом, мышьяком и другими веществами). Как и другие тяжелые металлы, серебро способно накапливаться в организме и вызывать серьёзные отравления аргирозы .

Литература

  1. А.В. Бгатов Биогенная классификация химических элементов// http://www.nisleda.net/…e-bgatov.htm «Философия науки» 2(6) 1999.
  2. Silvestry-Rodriguez N, Bright KR, Uhlmann DR, Gerba CP,“Inactivation of Pseudomonas aeruginosa and Aeromonas hydrophila by silver in tap water”//Environmental Science and health 42(11) 2007.
  3. Кульский Л.А. Серебряная вода. -Киев, 1987.
  4. Григорьева Л.В. Водоподготовка и очистка промышленных стоков. -Киев, 1973. -Вып.10. -С. 9–13.
  5. Брызгунов В.С., Липин В.Н., Матросова В..Р. Сравнительная оценка бактерицидных свойств серебряной воды и антибиотиков на чистых культурах микробов и их ассоциациях// Научн.тр.Казанского мед.ин-та. –1964. -Т.14. -С. 121–122.
  6. Chappel J.B., Greville G.D. Effect of silver ions on mitochondrial adenosinetriphosphates// Nature (London). –1954. -Vol.174. -P. 930–931.
  7. Вайнар А.И.Биологическая роль микроэлементов в организме животных и человека 1960 г.
  8. Collargol. (Колларгол). Акционерное общество химическая фабрика фон Гейден. Радебель близ Дрездена. 1910 (обзор), пер. с нем. Место нахождения ЦГНМБ РФ г. Москва.
  9. Безлепко А. В. Кандидат медицинских наук (Главный военный клинический госпиталь имени академика Н. Н. Бурденко) и Гуща И. А. Кандидат медицинских наук (ОАО «ДИОД») Инструкция по медицинскому применению ионного и коллоидного серебра .
  10. Савадян Э.Ш., Мельникова В.М., Беликова Г.П. Современные тенденции использования серебросодержащих антисептиков// Антибиотики и химиотерапия. –1989. -N11. -С. 874–878.
  11. Doer R., Bergner W. Zur Oligodinamie des Silbers// Biochem. Zeitschr. –1922. -N131. -S. 351–356.
  12. Мироненко Ю.П. Полостной электрофорез// Медицинская газета.- 1971 – 26 октября.
  13. Войтенко А.М. Водоподготовка и очистка промышленных стоков. 1973., вып.10., -С.128–134.
  14. Лот Таранов, Ирина Филиппова Серебряная вода, Метод Таранова// Диля 2001 г, С.
  15. Ульянов Ю.П., Доктор мед.наук, Зав. Лор-отделением Медицинского Центра «АГАМИ» (Москва) //Проблемы серебряно-зависимых людей.!
  16. Е.Родимин Приготовление целебных медно-серебряных растворов и металлоионотерапия http://www.rem.org.ru/book.htm .
  17. Shahverdy AR, Fakhimi Ali, Minaian Sara Synthesis and effect of silver nanopracles on the antibacterial activity of different antibiotics against Staphylococcus and Escherichia coli// Nanovedicine-Nanotechnology biology and medicine 3(2): 168–171 Jun 2007.
  18. Eric J. Rentz, DO, MSc Historic Perspectives on Clinical Use and Efficacy of Silver.
  19. Rami Pedahzur, Ovadia Lev, Badri Fattal and Hillel I. Shuval The interaction of silver ions and hydrogen peroxide in the inactivation of E. coli: a preliminary evaluation of a new long acting residual drinking water disinfectant// Water Science and Technology Vol 31 No 5–6 pp 123–129 © IWA Publishing 1995.

Наночастицы серебра - хорошие антисептики . Благодаря высокой электропроводности они активно используются в производстве товаров широкого потребления - пищевых добавок, одежды, бытовой техники, игрушек. В связи с этим важно выяснить, не вредят ли они здоровью людей и животных. Исследователи из Института общей генетики им. Н. И. Вавилова под руководством Александра Рубановича при содействии коллег из НИИ общей патологии и патофизиологии РАМН и Научно - производственной компании «Наномет» выяснили, что инъекции наночастиц серебра убивают млекопитающих, но ионы серебра безвредны. На рисунке 1 показана картинка наночастицы серебра .

Рисунок 1 - Наночастицы серебра

Наночастицы серебра авторы работы получили методом биохимического синтеза путем восстановления ионов металла биологически активным веществом из группы флавоноидов. Начальная концентрация наночастиц в водном растворе составляла 0.54 г/л. Действие раствора сравнивалось с действием ионов Ag+ в эквивалентных концентрациях, для чего использовался раствор азотнокислого серебра (начальная концентрация 0.85 г/л).

Молодые экспериментальные мыши, которым делались инъекции растворов серебра в разных формах и концентрациях, были разделены на несколько групп. Животные 30 суток содержались в виварии, где ученые наблюдали за их состоянием и ежедневно вели учет павших. В первые часы после инъекции у грызунов, которым вкалывались наночастицы, снижалась двигательная активность, возникали судороги и паралич задних лапок. Смерть наступала через 12 - 24 часов после введения препарата. Специалисты предположили, что животных губило воздействие нанопрепарата на нервную ткань. Грызуны, которым были введены ионы серебра, остались живы в полном составе, равно как и контрольная группа, которым вкалывали дистиллированную воду. Токсическое действие наночастиц на генетический материал ученые оценивали по количеству патологически измененных спермиев у самцов мышей и степени повреждения ДНК лимфоцитов и других клеток селезенки.

Свойства наночастиц серебра

Свойства коллоидного раствора , в том числе и наночастиц серебра, определяются возможностью коагуляции и перекристаллизации, т. е. агрегативной устойчивостью, а также седиментационной устойчивостью и возможностью их окисления кислородом воздуха. Анализ литературных данных показал, что для описания устойчивости нанодисперсии серебра во времени могут быть использованы несколько методов. Метод визуального наблюдения за системой может дать предварительные и общие закономерности относительной устойчивости исследуемой дисперсии. Может быть зафиксировано изменения окраски системы и образования осадка в ней. Для наночастиц серебра цвет систем от красного (желто - коричневого) меняется до серого и даже черного. Визуальный метод наблюдения может сыграть определяющую роль при исследовании седиментационной устойчивости.

Малые размеры наночастиц приводят к многократному увеличению удельной поверхность материалов , что способствует транзиту самых различных веществ за счет увеличения адсорбционной емкости. Возрастает химическая реакционная способность и каталитические свойства вещества. На эти параметры прямо влияют также физико - химические свойства , включая форму, поверхностную структуру, полярность. Поэтому увеличивается вероятность развития различных процессов внутри отдельных клеточных структур: органелл, биологических мембран, проникновение и контакт с клеточным ядром и ДНК. Во многом цитотоксические свойства наночастиц объясняются их способностью к агрегации внутри клеток .

Было найдено , что при радиационно-химическом восстановлении ионов Ag+ в присутствии наночастиц гетерополисоединений в оптическом спектре возникают полоса золя металла с максимумом при 392 нм и полоса при 650 нм, обусловленная продуктом восстановления («синь»).

Напуск воздуха приводит к окислению «сини», интенсивность полосы наночастиц серебра при этом существенно уменьшается и смещается в длинноволновую область (= 410 нм). Повторное г - облучение раствора восстанавливает предшествующий спектр поглощения. Указанную процедуру «окисления - восстановления» можно провести несколько раз, при этом достигаются те же оптические эффекты. Таким образом, восстановление гетерополисоединения, составляющего стабилизирующий слой наночастиц серебра, обеспечивает повышение электронной плотности на металлическом ядре, что вызывает увеличение интенсивности полосы поглощения и ее «синее» смещение. Соответственно, окисление приводит к обратному эффекту.

Анализируя спектры поглощения, можно предположить, что появление дополнительной полосы поглощения в длинноволновой части спектра говорит о возможной коагуляции и перекристаллизации, происходящих в системе. Aгрегативную устойчивость можно охарактеризовать при помощи метода электронной микроскопии. Он позволяет получить распределение частиц по размерам и формам, а также дает представление о расположение наночастиц в пространстве (несвязанные, коагулированные).

Согласно теории Ми. Друде (Mie. Drude) положение максимума полосы поглощения поверхностных плазмонов в металле определяется по уравнению:

л 2 макс = (2рc ) 2 m (е 0 + 2n )/4рN е e 2 (1)

где c - скорость света;

m - эффективная масса электрона;

e - заряд электрона;

е 0 - диэлектрическая проницаемость металла;

n - показатель преломления среды;

Ne - плотность свободных электронов в металле.

Рассеяние света мелкими частицами обусловливает широкий класс явлений, которые можно описать на основе теории дифракции света на диэлектрических частицах. Многие характерные особенности рассеяния света частицами удаётся проследить в рамках строгой теории, разработанной для сферических частиц английским учёным А. Лявом (1889) и немецким учёным Г. Ми (1908, теория Ми). Когда радиус шара r много меньше длины волны света ln в его веществе, рассеяние света на нём аналогично нерезонансному рассеянию атомом. Сечение (интенсивность) рассеяния в этом случае сильно зависит от r и от разности диэлектрических проницаемостей e и вещества шара и окружающей среды: s ~ ln --4r6(e -) . С увеличением r до r ~ ln и более (при условии e > 1) в индикатрисе рассеяния появляются резкие максимумы и минимумы -- вблизи так называемых резонансов Ми (2r = mln, m = 1,2, 3) сечения сильно возрастают и становятся равными 6pr 2 рассеяние вперёд усиливается, назад -- ослабевает; зависимость поляризации света от угла рассеяния значительно усложняется.

Рассеяние света большими частицами (r > ln) рассматривают на основе законов геометрической оптики с учётом интерференции лучей, отражённых и преломленных на поверхностях частиц. Важная особенность этого случая -- периодический (по углу) характер индикатрисы рассеяния и периодическая зависимость сечения от параметра r/ln. Рассеяние на крупных частицах обусловливает ореолы, радуги, гало и др. явления, происходящие в аэрозолях, туманах и пр.

Рассеяние средами, состоящими из большого числа частиц, существенно отличается от рассеяния отдельными частицами. Это связано, во - первых, с интерференцией волн, рассеянных отдельными частицами, между собой и с падающей волной. Во - вторых, во многих случаях важны эффекты многократного рассеяния (переизлучения), когда свет, рассеянный одной частицей, вновь рассеивается другими. В - третьих, взаимодействие частиц друг с другом не позволяет считать их движения независимыми.

Как уже отмечалось, свойства у наночастицы серебра на самом деле уникальные.

Во-первых, это феноменальная бактерицидная и антивирусная активность. Об антимикробных свойствах , присущих ионам серебра, человечеству известно уже очень давно. Наверняка большинство читателей слышали о целительных способностях церковной святой «воды», получаемой путем прогонки обычной воды сквозь серебряный фильтр. Такая вода не содержит многих болезнетворных бактерий, которые могут присутствовать в обычной воде. Поэтому она может храниться годами, не портясь и не «зацветая».

Кроме того, такая вода содержит некоторую концентрацию ионов серебра, способных нейтрализовать вредные бактерии и микроорганизмы , чем и объясняется ее благотворное влияние на здоровье человека. На рисунке 2 представлены вирусы атакующие клетку. Скорость, с которой вирус атакует клетку, превышает скорость пули.

Рисунок 2 - Вирусы атакующие клетку

Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы .Как показал эксперимент, ничтожные концентрации наночастиц уничтожали все известные микроорганизмы (в том числе и вирус СПИДа), не расходуясь при этом.

Кроме того, в отличие от антибиотиков, убивающих не только вредоносные вирусы, но и пораженные ими клетки, действие наночастиц очень избирательно: они действуют только на вирусы, клетка при этом не повреждается. Дело в том, что оболочка микроорганизмов состоит из особых белков, которые при поражении наночастицами перестают снабжать бактерию кислородом. Несчастный микроорганизм больше не может окислять свое «топливо» глюкозу и гибнет, оставшись без источника энергии. Вирусы, вообще не имеющие никакой оболочки, тоже получают свое при встрече с наночастицей. А вот клетки человека и животных имеют более «высокотехнологичные» стенки, и наночастицы им не страшны.

В настоящий момент проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах. Но уже сейчас они находят огромное количество применений.

Например, фирма «Гелиос» выпускает зубную пасту «Знахарь» с наночастицами серебра, эффективно защищающую от различных инфекций. Также небольшие концентрации наночастиц добавляют в некоторые кремы из серии «элитной» косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При использовании наблюдается также противовоспалительный и заживляющий эффект.

Ткани, модифицированные серебряными наночастицами, являются, по сути, самодезинфицирующимися. На них не может «ужиться» ни одна болезнетворная бактерия или вирус. Наночастицы не вымываются из ткани при стирке, а эффективный срок их действия составляет более шести месяцев, что говорит о практически неограниченных возможностях применения такой ткани в медицине и быту. Материал, содержащий наночастицы серебра, незаменим для медицинских халатов, постельного белья, детской одежды, антигрибковой обуви и т.д., и т.п.

Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.

Люди всегда искали способы борьбы с инфекциями, передаваемыми воздушно - капельным путем -гриппом, туберкулезом, менингитами, вирусным гепатитом и т. п. Но, увы, воздух в наших квартирах, офисах и особенно в местах массового скопления людей (больницы, общественные учреждения, школы, детские сады, казармы, тюрьмы и т. п.) перенасыщен патогенными микроорганизмами, выдыхаемыми зараженными людьми .

Традиционные способы профилактики не всегда справляются с этой проблемой, поэтому нанохимики предложили для ее решения очень элегантный способ: добавить в лакокрасочные материалы, покрывающие стены заведений, наночастицы серебра. Как оказалось, на покрашенных такими красками стенах и потолках не может «жить» большинство патогенных микроорганизмов.

Наночастицы, добавленные в угольные фильтры для воды, практически не вымываются с ней, как это происходит в случае обычных серебряных ионов. Это говорит о том, что срок действия таких фильтров будет несоизмеримо больше, а качество очистки воды возрастет на порядок.

Короче говоря, крошечные, незаметные, экологически чистые серебряные наночастицы могут применяться везде, где необходимо обеспечить чистоту и гигиену: от косметических средств до обеззараживания хирургических инструментов или помещений. При этом, как уверяют ведущие российские ученые в данной области, стоимость средств и материалов, созданных на их основе, будет не намного дороже традиционных аналогов, и с развитием нанотехнологий они станут доступны каждому. Фирма Samsung уже добавляет наночастицы серебра в сотовые телефоны, стиральные машины, кондиционеры и т.д.

Похожие публикации