Особенности и применение алмаза и графита. Графит и алмаз: кристаллическая решетка и свойства

Для обычного человека алмаз и графит – это два совершенно не похожих и никак не связанных друг с другом элемента. Алмаз вызывает ассоциации с переливающимися драгоценностями, вспоминается выражение «блестит как алмаз». Графит – нечто серое, то, из чего обычно делают карандашные грифели.

Трудно поверить, что оба минерала – это одно и то же вещество разной формы обработки.

Понятие и основные характеристики минералов

Алмазом называют прозрачный кристалл, не имеющий цвета, обладающий высокими характеристиками преломления света. Выделяют следующие основные свойства минерала:

Природа зарождает как алмазы определенных форм, так и в нескольких кристаллических формах, что обусловлено его внутренним строением. Ярко выраженные кристаллы имеют форму куба или тэтраэдра с плоскими гранями. Иногда грани кажутся рельефными из-за наличия невидимых глазу многочисленных наростов и преобразований.

Хотя многие считают алмаз самым прочным материалом на свете, но науке известно вещество превосходящее алмаз по прочности более чем на 11% — «гипералмаз».

Графит представляет собой кристаллическое вещество серо-черного цвета, обладающее металлическим блеском. По составу графит имеет слоистую структуру, его кристаллы состоят из мелких тонких пластинок. Это очень хрупкий минерал, напоминающий по внешнему виду сталь или чугун. У графита низкая теплоемкость, но высокая температура плавления. Кроме того, этот минерал:


На ощупь графит жирный, а при проведении по бумаге оставляет следы. Это происходит из-за того, что атомы кристаллической решетки слабо связаны.

Отличие графита от алмаза, особенности строения и процесс перехода одного минерала в другой

Алмаз и графит – аллотропные по отношению друг к другу минералы, то есть имеют различные свойства, но являются разными формами углерода. Их основное отличие заключается лишь в химическом строении кристаллической решетки.

Кристаллическая решетка алмаза имеет вид тэтраэдра, в котором каждый атом окружен еще 4 атомами и является вершиной соседнего тэтраэдра, образуя бесконечное множество атомов, имеющих прочные ковалентные связи.

Графит на атомном уровне состоит из пластов шестиугольников с вершинами-атомами. Атомы хорошо связаны между собой только на уровне пластов, но пласты между собой сильной связи не имеют, что делает графит мягким и нестойким к разрушению. Именно эта особенность и позволяет получить из графита алмаз.

Физические и химические свойства алмаза и графита хорошо видны из таблицы.

Характеристика
Строение атомной решетки Кубическая форма Гексагональная
Светопроводимость Хорошо проводит свет Не пропускает свет
Электропроводимость Не обладает Имеет хорошую электропроводимость
Связи атомов Пространственные Плоскостные
Структура Твердость и хрупкость Слоистость
Максимальная температура, при которой минерал остается неизменным 720 по Цельсию 3700 по Цельсию
Цвет Белый, голубой, черный, желтый, бесцветный Черный, серый, стальной
Плотность 3560 кг/м.куб. 2230 кг/м.куб.
Использование Ювелирное дело, промышленность Литейное производство, электроугольная промышленность.
Твердость по шкале Мооса 10 1

Химическая формула алмаза и графита одна и та же – углерод (С), но процесс создания в природе разный. Алмаз возникает при очень высоких давлениях и мгновенном охлаждении, а графит, наоборот, при низком давлении и высокой температуре.

Выделяют следующие методы получения алмазов:

Процесс алмаза в графит аналогичен. Разница лишь в показателях давления и температуры.

Месторождение минералов

Алмазы пролегают на глубинах более 100 км при температуре 1300 ̊С. От взрывной волны вступает в действие кимберлитовая магма, образуя так называемые кимберлитовые трубки, которые и являются коренными месторождениями алмазов.

Кимберлитовая трубка названа в честь африканской провинции Кимберли, где она и была впервые открыта. Породы с алмазными залежами называют кимберлитами.

Самые известные ныне месторождения находятся в Индии, Южной Африке и в России. На коренных месторождениях, состоящих из кимберлитовых и лампроитовых трубок, добывают до 80% всех алмазов.

Найти алмазы в добытой породе помогают рентгеновские лучи. Большинство найденных камней используется в промышленности, так как не обладают достаточными характеристиками для ювелирной области. Промышленные камни разделяют на 3 вида:

  • борт – мелкие камни, имеющие зернистую структуру;
  • баллас – камни круглой или грушевидной формы;
  • карбонадо – камень черного цвета, получивший свое название из-за сходства с углем.

Любопытно, что наиболее крупные и выдающиеся по характеристикам алмазы получают свое уникальное название. Самые известные из них – «Шах», «Звезда Минаса», «Кохинур», «Звезда Юга», «Президент Варгас», «Минас-Жерайс», «Английский алмаз Дрездена» и др.

Графит образуется в результате видоизменения осадочных пород. Мексиканские, ногинские и мадагаскарские графитовые месторождения богаты рудой с графитом низкого качества. Менее распространенные – ботогольский и цейлонский тип, отличаются рудой, богатой высоким содержанием графита. Крупнейшие известные месторождения находятся на Украине и в Краснодарском крае.

Сфера применения

Алмаз и графит используют гораздо шире, чем может показаться на первый взгляд. Алмазы нашли свое применение в следующих сферах:


В процентном соотношении использования алмазов выглядит так:

  1. Инструменты, машинные детали – 60%.
  2. Обрамление шлифовочных кругов -10%.
  3. Переработка проволоки-10%.
  4. Бурение скважин – 10%.
  5. Ювелирные изделия, мелкие детали – 10%.

Что касается графита, то в чистом виде он практически не используется, а подвергаются предварительной обработке, хотя в разных сферах используется графит разного качества. Для канцелярских карандашей используют графит высочайшего качества. Наиболее широкое применение нашло в литейном производстве, обеспечивая гладкую поверхность различных форм стали. Здесь используется практически необработанный графит.

Электроугольная промышленность наряду с природным использует искусственно созданный графит, также получивший широкое применение благодаря особой чистоте и постоянству состава. Электропроводимость сделала графит материалом для электродов электрических приборов. В металлургии используется как смазочный материал.

Алмаз и графит – одинаковые по составу, но по-своему уникальные вещества. Польза графита для различных отраслей промышленности гораздо выше алмаза.

Алмаз же, призванный радовать своей красотой, неоценим для экономики, принося огромные доходы от применения в ювелирной промышленности.

Здравствуйте, дорогие наши читатели! Вы когда-нибудь задумывались, алмаз и графит — что может быть у них общего? Казалось бы, алмаз – это то, из чего делают дорогие украшения, радующие глаз человека даже с самым утонченным вкусом. Твердый, жесткий и практически неразрушимый. И графит – основной элемент для изготовления карандашей, очень хрупкий и легко ломается. Вспомните, как часто у вас ломался грифель?

Тем не менее, оба минерала являются родственными друг другу. Более того, воссоздание специальных условий позволяет осуществить процесс превращения из графита в алмаз, так и наоборот.

Прочтение статьи позволит вам узнать какими свойствами обладают представленные в статье минералы, о том, как они вообще появились на Земле, куда нужно отправиться для того, чтобы добывать алмазы. Или, если повезет меньше, графит, а также, возможно ли изготовление алмазов и графита в домашних условиях.

Желаем приятного прочтения!

Особенности алмаза и графита

Главными отличительными особенностями алмаза являются:

  • способность преломлять и отражать солнечный свет, что придает ему знаменитый блеск;
  • самая высокая твердость (по сравнению с другими минералами) и хрупкость;
  • метастабильность – способность не менять своей структуры и состояния на протяжении сотен лет при обычных условиях;
  • высокие показатели теплопроводности;
  • высокая устойчивость к кислотам и щелочам;
  • обладает низким коэффициентом трения;
  • диэлектрик, электрический ток не проводит.

Такие свойства минерала становятся возможными благодаря тому, что его внутренняя структура имеет сложную кристаллическую решетку, представляющую собой куб или тетраэдр. В основе строения лежит такой химический элемент как углерод.

При наличии в своей кристаллической решетке примесей способен менять свой привычный для всех цвет. Так, наличие в составе железа придаёт минералу коричневый оттенок, лития — желтый, алюминия — голубой, марганца — розовый или красный (в зависимости от концентрации), бора — синий, хрома — зеленый.


Графит является полной противоположностью алмазу. Его структура состоит из ряда слоев, внешне напоминающие собой тонкие пластины. Основным элементом строения является углерод. Имеет черный цвет с оттенком металла. Мягкий и немного жирноватый на ощупь.

Имеет следующие отличительные особенности:

  • не пропускает и не преломляет свет;
  • хорошие показатели теплопроводности;
  • хорошая способность огнеупорности;
  • хрупкость;
  • низкий коэффициент трения;
  • проводит электрический ток;
  • можно смешивать с другими веществами.

Не смотря на столь отличающиеся свойства, современная наука научилась искусственно изготавливать представленные здесь минералы друг из друга.

Алмаз – это минерал или нет?

Для того, чтобы ответить на этот вопрос разберемся, а что же вообще такое «минерал». В современной науке минералом принято считать твердое тело природного происхождения, имеющее кристаллическую структуру, то есть расположение атомов строго упорядочено.

Так как структура алмаза представляет собой куб или тетраэдр, имеет четкую кристаллическую решетку, его с уверенностью можно отнести к минералам.

Аналогичная ситуация и с графитом, пластинчатая структура которого так же имеет строгую упорядоченность.


Происхождение алмазов и графита

Точных и достоверных данных, откуда появились эти минералы, нет. Существует лишь некоторые гипотезы, а именно:

  1. Гипотеза о магматическом происхождении
  2. Гипотеза о мантийном происхождении
  3. Гипотеза о флюидном происхождении

Первые две теории являются самыми популярными и сводятся к тому, что появление произошло в недрах нашей Земли много миллионов лет назад на глубине от ста до двухсот километров. На поверхность кристаллы были вынесены в результате взрывов и извержений вулканов.

Графит в свою очередь может образовываться и в результате изменения осадочных пород.

Интересным фактом является наличие алмазной крошки в метеоритах. Это говорит о том, что кроме земного происхождения, существует еще и кристаллы метеоритного происхождения, принесенные из космоса.

Существует ряд гипотез о том, как могла образовываться крошка в метеоритах. Наиболее популярная теория заключается в том, что сам по себе метеорит не содержит в себе алмазную крошку в «чистом» виде, а лишь обогащен углеродом. При ударе о Землю развиваются идеальные условия для воссоздания минерала: высокая температура (две-три тысячи градусов) и давление (от 5 до 10 ГПа). Алмазы, образованные данным способом, называются импактитами.

К сожалению, космического происхождения кристаллы слишком малы для промышленной добычи и потому все используемые для добычи месторождения только природного происхождения.


Основные месторождения

Крупнейшие из алмазных месторождений расположены в Индийской Республике, Российской Федерации, провинция Кимберли (приходится 80% всей добычи).

Российские месторождения находятся в Республике Саха (Якутия), Пермском крае и Архангельской области.

Для того, чтобы обнаружить алмазное месторождение применяется рентген. На поиски уходят десятки лет. Очень малое количество открытых месторождений обладает минералами высокого качества, достаточного для использования в ювелирной отрасли.

Процесс добычи заключается в извлечении руды и ее измельчения, отделении сопутствующих пород. После этого, с помощью специальной техники, определяют категории и классы добытого материала.

Крупнейшие из графитовых месторождений расположены в Краснодарском крае и на Украине. Месторождения с низким качеством материала находятся на Мадагаскаре, в Бразилии, Канаде и Мексике.

Как правило, встречается вместе с известняковыми породами, такими как апатит и флогопит, а так же в образованиях пневматолита, а именно: кварца, полевого шпата, биотита, титаномагнетита.


Область применения

Применяются во многих областях промышленности.

  • электрическая техника;
  • радиоэлектроника и силовая электроника;
  • бурильные установки;
  • изготовление драгоценных украшений и аксессуаров.

Область применения графита:

  • создание огнестойкого оборудования;
  • изготовление смазочных материалов;
  • выпуск грифелей для карандашей;
  • ядерная энергетика (как замедлитель нейтронов);
  • искусственное производство алмазов.

Самая популярная область применения – ювелирное дело. Минерал после обработки, называемый бриллиантом, имеет высокую стоимость и большую популярность на рынке украшений. Для многих людей он еще является отличным вариантом для вложения капитала.


Технология получение алмазов из графита

Для современной науки сущий пустяк вырастить искусственный алмазный кристалл. Если в естественных условиях уходят сотни миллионов лет на его образование, в специально оборудованной лаборатории это осуществляется в гораздо меньшие сроки.

Принцип получения неестественным путем заключается в воссоздании оптимальных условий, наиболее благоприятных для изменения формы углерода. Необходима одновременно высокая температура (от 1500 до 3000 градусов) и давление (в несколько ГПа). Самый простой способ получения заключается в импульсном нагреве графита до двух тысяч градусов. При поддержании высокого давления осуществляется процесс преобразования графита в алмазы. В то же время, при снижении давления запускается обратный процесс, при котором один минерал превращается в другой.

В связи с этим для получения алмазного кристалла необходимо стабильное поддержание высоких параметров температуры и давления в течение длительного времени. Это делает технологию преобразования энергоемкой и затратной. Кроме того, в ходе данного процесса получается получить только технический алмаз, непригодный к использованию в ювелирных изделиях.

По этим причинам неестественное алмазное производство признано нерентабельным по сравнению с добычей.

Получение искусственного графита

Существуют следующие виды искусственных графитов: доменные, коксовые, реторные, ачесоновские.

Самым популярным ненатуральным видом является коксовый. Способ получения заключается в получении плотной углеродной массы из песка и кокса, ее обжиге, связанном с карбонизацией. На последнем этапе происходит кристаллизация (графитизация). Для уменьшения пористости, полученный минерал пропитывают синтетическими смолами и повторяют обжарку. Каждый повторенный цикл значительно уменьшает пористость. Всего циклов может быть до пяти.

Существенным минусом искусственного графита является содержание различных примесей и, соответственно, низкая «чистота».

На этом все! Большое спасибо за проявленный интерес и внимание! Не забудьте порекомендовать статью к прочтению друзьям в социальных сетях!

Команда ЛюбиКамни

Алмаз, графит и уголь - состоят из однородных атомов графита, но имеют различные кристаллические решетки.

Краткая характеристика: алмаз, графит и уголь

Кристаллические решетки графита не имеют прочных связей, они представляют собой отдельные чешуйки и как бы скользят друг по другу, легко отделяясь от общей массы. Графит часто используют в качестве смазки для трущихся поверхностей.

Уголь состоит из мельчайших частиц графита и таких же малых частиц углерода, находящегося в соединении с водородом, кислородом, азотом.

Кристаллическая решетка алмаза жесткая, компактная, обладает высокой твердостью.

Тысячелетиями люди даже не подозревали, что эти три вещества имеют что-то общее. Все это - открытия более позднего времени.

Никаких признаков их родства не давала и природа. Месторождения угля никогда не соседствовали с графитом. В их залежах никогда геологи не обнаруживали сверкающих кристаллов алмаза.

Но время не стоит на месте. В конце XVII века флорентийским ученым удалось сжечь алмаз. После этого не осталось даже крохотной кучки золы. Английский химик Теннант через 100 лет после этого установил, что при сжигании одинаковых количеств графита, угля, и алмаза образуется одинаковое количество углекислого газа. Этот опыт открыл истину.

Взаимопревращения алмаза, графита и угля

Сразу же ученых заинтересовал вопрос: а возможно ли превращение одной аллотропической формы углерода в другую? И ответы на эти вопросы были найдены.
Оказалось, что алмаз полностью переходит в графит , если его нагреть в безвоздушном пространстве до температуры 1800 градусов.

Если через уголь пропускают электрический ток в специальной печи, то он превращается в графит при температуре 3500 градусов.

Превращение - графита или угля в алмаз

Труднее далось людям третье превращение - графита или угля в алмаз . Почти сто лет пытались осуществить его ученые.

Получить из графита алмаз

Первым был, видимо, шотландский ученый Генней . В 1880 году он начал серию своих опытов. Он знал, что плотность графита - 2,5 грамма на кубический сантиметр, а алмаза - 3,5 грамма на кубический сантиметр. Значит, надо уплотнить укладку атомов и получить из графита алмаз , решил он.

Он брал прочный стальной орудийный ствол, наполнял его смесью углеводородов, прочно закрывал оба отверстия и накаливал до красного каления. В раскаленных трубах возникало гигантское, по понятиям того времени, давление.

Не раз оно разрывало сверхпрочные орудийные стволы, как авиационные бомбы. Но все-таки некоторые выдержали весь цикл нагреваний. Когда они остыли, Генней нашел в них несколько темных, очень прочных кристаллов.

Я получил искусственные алмазы,

Решил Генней.


Способ получения искусственных алмазов

Через 10 лет после Геннея французский ученый Анри Муассон подверг стремительному охлаждению насыщенный углеродом чугун. Мгновенно застывшая поверхностная корка его, при остывании уменьшаясь в размерах, подвергала внутренние слои чудовищному давлению.

Когда затем Муассон растворял в кислотах чугунные ядрышки, он находил в них крохотные непрозрачные кристаллики.

Я нашел еще один способ получения искусственных алмазов !

Решил изобретатель.

Проблема искусственных алмазов

Спустя еще 30 лет, проблемой искусственных алмазов стал заниматься английский ученый Парсонс . В его распоряжении были гигантские прессы принадлежавших ему заводов. Он стрелял из пушки прямо в дуло другого оружия, но алмазов ему получить не удалось.

Впрочем, уже во многих развитых странах мира лежали в музеях искусственные алмазы разных изобретателей. И было выдано не мало патентов на их получение. Но в 1943 году английские физики подвергли скрупулезной проверке полученные искусственным путем алмазы.

И оказалось, что все они не имеют ничего общего с настоящими алмазами, кроме только алмазов Геннея. Они оказались настоящими. Это сразу же стало загадкой, остается загадкой и сегодня.

Превращение графита в алмаз

Наступление продолжалось. Во главе его встал лауреат Нобелевской премии американский физик Перси Бриджмен . Почти полвека занимался он усовершенствованием техники сверхвысоких давлений.

И в 1940 году, когда в его распоряжении оказались прессы, могущие создавать давление до 450 тысяч атмосфер, он начал опыты по превращению графита в алмаз .

Но осуществить это превращение он не смог. Графит, подвергнутый чудовищному давлению, остался графитом. Бриджмен понимал, чего не хватает его установке: высокой температуры.

Видимо, в подземных лабораториях, где создавались алмазы, играла роль и высокая температура. Он изменил направление опытов. Ему удалось обеспечить нагрев графита до 3 тысяч градусов и давление до 30 тысяч атмосфер. Это было уже почти то, что, как мы знаем теперь, необходимо для алмазного превращения.

Но и недостающее «почти» не позволило Бриджмену достичь успеха. Честь создания искусственных алмазов досталась не ему.

Первые искусственные алмазы

Первые искусственные алмазы были получены английскими учеными Бэнди, Холлом, Стронгом и Вентроппом в 1955 году. Они создавали давление в 100 тысяч атмосфер и температуру в 5000 градусов.

В графит добавляли катализаторы - железо, ром, марганец и т. д. И на границе графита и катализаторов возникли желто-серые непрозрачные кристаллы технических искусственных алмазов. Что ж, алмаз идет не только на брилианты, он используется и на заводах, и на фабриках.

Впрочем, несколько позже американские ученые нашли способ получать и прозрачные кристаллы алмаза. Для этого грант подвергают давлению в 200 тысяч атмосфер, а затем электрическим разрядом нагреванию до температуры 5 тысяч градусов.

Кратковременность разряда - он длится тысячные доли секунды - оставляет установку холодной, и алмазы получаются чистыми и прозрачными.

Создание искусственных алмазов

Советские ученые пришли к созданию искусственных алмазов своим путем. Советский физик О.И. Лейпунский провел теоретические исследования и заранее установил те температуры и давления, при которых возможно алмазное превращение графита.

Цифры эти в те годы - это было в 1939 году - показались удивительными, стоящими за границами достижимого для современной техники: давление не менее 50 тысяч атмосфер и температура 2 тысячи градусов. И все-таки, за стадией теоретических расчетов пришла пора создания опытных конструкций, а затем и промышленных установок. И сегодня работают многочисленные устройства, выпускающие искусственные алмазы и другие, еще более твердые вещества. Высшее достижение природы в твердости материала не только достигнуто, но уже и перекрыто.

Такова история открытия третьего превращения углерода, самого важного для современной техники.

Как алмаз возник в природе

Но что осталось самого удивительного в алмазном превращении углерода? То, что ученые до сих пор не понимают, как алмаз возник в природе !

Известно, что единственным коренным месторождением алмазов являются кимберлитовые трубки . Это глубокие цилиндрические колодцы диаметром в несколько сот метров, заполненные синей глиной - кимберлитом, с которой вместе и были вынесены на поверхность земли драгоценные камни.


Гипотеза глубинного рождения алмазов

Наиболее ранней была гипотеза глубинного рождения алмазов . Согласно этой гипотезе, сверкающие кристаллы выделились из расплавленной магмы на глубине около 100 километров, а затем вместе с магмой по трещинам и разломам медленно поднимались к поверхности.

Ну а с глубины в 2-3 километра магма прорывала и вырывалась на поверхность, образуя кимберлитовую трубку.

Взрывная гипотеза

На смену этой гипотезе пришла другая, вероятно, ее следует назвать взрывной гипотезой . Ее выдвинули Л. И. Леонтьев, А. А. Кадемекий, В. С. Трофимов . По их мнению, алмазы возникают на глубине всего 4-6 километров от земной поверхности.

А требующееся для возникновения алмазов давление создается взрывом, вызванным некоторыми взрывчатыми веществами, проникшими в занимаемые магмой полости из окружающих осадочных пород. Это могут быть нефть, битумы, горючие газы. Авторы гипотезы предложили несколько вариантов химических реакций, в результате которых образуются взрывчатые смеси и возникает свободный углерод.

Эта гипотеза объясняла и высокую температуру, требующуюся для алмазного превращения, и гигантское давление. Но не все особенности кимберлитовых трубок она объясняла. Очень легко было доказать, что породы кимберлитовой трубки образовались при давлении, не превышающем 20 тысяч атмосфер, но невозможно доказать, что они возникли при более высоком давлении.

Сегодня геофизики достаточно точно установили, для каких пород требуются те или иные давления и температуры образования. Скажем, постоянный спутник алмаза - минерал пироп - требует 20 тысяч атмосфер, алмаз - 50 тысяч. Большее, чем для пиропа, и меньшее, чем для алмаза, давление требуют коэсит, стишовит, пьезолит.

Но ни этих, ни других пород, требующих для своего образования столь высоких давлений, в кимберлите нет. Единственное исключение здесь - алмаз. Почему это так? Ответить на этот вопрос решил доктор геолого-минералогических наук Э. М. Галымов .

Почему, спросил он себя, давление в 50 тысяч атмосфер должно быть обязательно свойственно всей массе магмы, в которой творятся алмазы? Ведь магма - поток. В ней возможны и вихри, и быстрины, и гидравлические удары, и пузырьки возникающей местами кавитации.

Гипотеза рождения алмаза в режиме кавитации

Да, именно кавитация ! Это удивительно неприятное явление, несущее не мало бед гидравликам! Кавитация может возникнуть на лопастях гидравлической турбины, если она хоть чуть-чуть вышла за границы рассчитанного режима. Такая же беда может постичь и лопасти гидравлического , перешедшего на форсированный режим.

Кавитация может разрушить и лопасти пароходного винта, словно бы надорвавшегося в борьбе за скорость. Она губит, разрушает, разъедает. Да, это точнее всего: разъедает! Сверхпрочные стали, блиставшие зеркальной полировкой поверхностей, превращаются в рыхлую пористую губку.

Словно тысячи крохотных беспощадных и жадных ртов рвали по крохам металл в том месте, где его изгрызла кавитация. Да еще ртов, которым «по зубам» легированный металл, от которого отскакивает напильник! Не мало аварий турбин и насосов, гибели пароходов и теплоходов произошло из-за наличия кавитации. И ста лет не прошло, как разобрались, что же это такое - кавитация.

А действительно, что же это такое? Представим поток жидкости, движущейся в трубе переменного сечения. Местами, в сужениях, скорость течения растет, местами, там, где поток расширяется, скорость течения падает. Одновременно, но по обратному закону изменяется давление внутри жидкости: там, где вырастает скорость, резко падает давление, а там, где скорость уменьшается - давление растет.

Этот закон обязателен для всех движущихся жидкостей. Можно представить, что при некоторых скоростях давление падает до той величины, при которой жидкость закипает, и в ней возникают пузырьки пара. Со стороны кажется, что жидкость в месте кавитации начала кипеть, ее заполняет белая масса крохотных пузырьков, она становится непрозрачной.

Вот эти-то пузырьки и являются главной бедой при кавитации. Как рождаются и как умирают кавитационные пузырьки, еще недостаточно изучено. Неизвестно, заряжены ли внутренние их поверхности. Неизвестно, как ведет себя вещество паров жидкости в пузырьке. А Галымову было поначалу неизвестно, могут ли вообще возникнуть кавитационные пузырьки в магме, заполняющей кимберлитовую трубку.

Ученый произвел расчеты. Оказалось, что кавитация возможна при скоростях течения магмы, превышающих 300 метров в секунду. Такие скорости легко получить для воды, но может ли течь с такой же скоростью тяжелая, густая, вязкая магма? Снова расчеты, расчеты и долгожданный ответ: да, может! Для нее возможны скорости и в 500 метров в секунду.

Дальнейшие расчеты должны были выяснить, будут ли достигаться в пузырьках требующиеся величины температуры и давления - 50 тысяч атмосфер давления и 1500 градусов температуры. И эти расчеты дали положительные результаты.

Средняя величина давления в пузырьке в момент охлопывания достигала миллиона атмосфер! А максимальное давление может быть в десять раз больше. Температура же в этом пузырьке имеет величину в 10 тысяч градусов. Что и говорить, условия далеко перешагнули через предельные для алмазного превращения.

Скажем сразу, условия, которые создает кавитационный пузырек для зарождения алмаза, очень своеобразны. Помимо температур и давлений, по временам возникающих в крохотных объемах этих пузырьков, там проносятся ударные волны, сверкают удары молний - вспыхивают электрические искры.

Звуки вырываются за пределы узкого участка жидкости, охваченного кавитацией. Соединяясь, они воспринимаются как своеобразное гудение, подобное тому, которое доносится из закипающего чайника. Но именно такие условия являются идеальными для зарождающегося алмазного кристалла. Поистине, его рождение происходит в грозе и молниях.

Можно упрощенно и опуская многие детали представить происходящее внутри кавитационного пузырька. Вот повысилось давление жидкости, и кавитационный пузырь начинает исчезать. Двинулись к центру его стенки, и от них сразу же отрываются ударные волны. Они движутся в ту же сторону к центру.

Не надо забывать об их особенностях. Во-первых, они движутся со сверхзвуковой скоростью, во-вторых, за ним остается крайне возбужденный газ, у которого резко поднялись и давление, и температура.

Да, это та же самая ударная волна, что движется по куску горящего тола и превращает мирно горение в яростный, всесокрушительный взрыв. В центре пузырька ударные волны, бегущие с разных сторон, сходятся. При этом плотность вещества в этой точке схождения превосходит плотность алмаза.

Трудно сказать, какую форму там приобретает вещество, но оно начинает расширяться. При этом ему приходится преодолевать противодавление, измеряемое миллионами атмосфер. За счет этого расширения оказавшееся в центре пузырька вещество охлаждается с десятков тысяч градусов всего до тысячи градусов.

Узнав физические свойства алмаза и графита, ученые отметили, что это разные формы углерода. Первый – это драгоценный минерал, один из самых твердых в мире. По принятой у геммологов шкале Мооса алмаз имеет наибольший балл твердости – 10. Графит по этой системе не дотягивает даже до 2. Блестящая драгоценность и грифель простого карандаша состоят из углерода. Различие этих минералов определяет тип кристаллической решетки. Но свойства их сильно отличаются друг от друга. Об этом читайте ниже.

Что такое алмаз и графит

Алмаз – самый твердый минерал. Внешне это прозрачный камень, у которого четко видна кристаллическая форма. Диаманты бесцветные, но встречаются разные оттенки, среди которых даже черный. Цвет зависит от природных условий, в которых формировался камень, а также от различных примесей в его структуре.

Графит – хрупкое, жирное на ощупь вещество, имеющее металлический блеск, состоящее из молекул углерода, расположенных слоями и образующих мелкие тонкие пластинки. При его нажатии на листке остается след.

Состав минералов

Первое, с чего начнем рассмотрение характеристики алмаза и графита, это состав минералов. Оба – из углерода, шестого элемента периодической системы.

Поскольку алмаз и графит состоят из частиц углерода, тип вещества у них – индивидуальный, а качественный состав образован соединениями атомов углерода. Формула алмаза и графита в химии проста – С, углерод. Этот химический элемент не имеет запаха, поэтому ни алмаз, ни графит ничем не пахнут.

Хотя химическая формула алмаза имеет схожесть с формулой графита, у структур, в которые соединяются атомы углерода, образуя кристаллическую решетку, есть разница.

Когда у минералов кристаллические решетки имеют отличие, но для них характерен идентичный химический состав, их называют полиморфами. Рассматриваемые минералы – разные виды полиморфных модификаций углерода.

Как и где находят углеродные минералы

Сходство элементарного химического состава не обуславливает схожие свойства веществ. Различия объясняются сложностями происхождения двух разных углеродных пород. Алмазы образуются под действием сильного давления после сверхбыстрого охлаждения. А если атмосферное давление занижено, то при довольно высокой температуре образуется графит.

Подтверждением того, что алмаз и графит образовались не одинаково, служит их нахождение в природе. Около 80% всех бриллиантов добывают в кимберлитовых трубках – глубоких воронках, образованных магмой, вышедшей после взрыва и выхода наружу подземного газа.

Графитовых же месторождений много в осадочных породах и пластах, образованных магмой.

Химическая связь в углеродных минералах

Частицы, из которых состоят твердые вещества, соединены в кристаллические решетки. Науке известны 4 вида таких решеток – ионная, молекулярная, атомная и металлическая.

Внешне драгоценный кристалл схож с кристаллами соли, но у солей ионная кристаллическая решетка.

Тип кристаллической решетки алмаза, как и его полиморфа графита, атомная. В ее узлах лежат атомы углерода. Агрегатное состояние – твердое тело. Но все же по твердости углеродные полиморфы различны.

Свойство алмаза быть таким прочным обусловлено силой химической связи атомов. Структура диаманта трехмерная, атомы углерода в нем расположены в форме трехгранной пирамиды, тетраэдра. Каждая атомарная частица одинаково крепко соединяется со всеми четырьмя соседними, это осуществлено посредством ковалентной связи.

Атомарно графит – это множество слоев шестиугольных фигур, в каждой вершине которых расположен атом углерода. Его слоистая структура двухмерна. Связь в слоях ковалентная сильная, а между слоями гораздо слабее, как у веществ с молекулярной кристаллической решеткой. Пласты связаны непрочно. Поэтому твердость графита меньше по сравнению с бриллиантом.

Взаимосвязь атомного строения и физики минерала

Рассмотрим, как внешне проявляется геометрия атомов. Различие свойств алмаза и графита напрямую связано с типом строения кристаллической решетки. Кристаллическая решетка алмаза имеет звенья из 4 хорошо соединенных атомов углерода. Они образовали сверхпрочные ковалентные сигма-связи. Оптические свойства межатомных соединений поглощают свет, делая кристалл прозрачным. А крепкая фиксация отрицательно заряженных элементарных частиц в однородных по силе связях придает ему твердость и свойства диэлектрика.

Образованные ковалентные пи-соединения гексагональной кристаллической решетки графита скрепляют атомы углерода в слои. При такой связи несколько электронов остаются свободными, поэтому пласты скреплены между собой незначительно. Движение нелокализованных элементарных частиц со знаком минус придает графиту электропроводность. У них отсутствует световая проводимость, что лишает вещество прозрачности, поэтому у графита цвет черный.

Аллотропные модификации углерода

Аллотропия – это способность химических элементов существовать в двух и более физических формах (аллотропах). Самой широкой из всех открытых является аллотропия углерода.

Если вы перечислите основные углеродные аллотропные видоизменения, то это будут:

  • алмаз;
  • графит;
  • карбин;
  • фуллерен.

Из указанных выше два аллотропа углерода синтезированы. Карбин и фуллерен – полученные искусственно аллотропные видоизменения углерода. Карбин – порошок из мелких кристалликов черного цвета. После открытия в лаборатории было найдено и природное вещество. Фуллерен – синтезированный в конце прошлого века в США желтый кристалл около 5 мм в диаметре.

Аллотропические формы углерода могут трансформироваться. Сам по себе переход алмаза в другое состояние не произойдет. Но при нагревании кристалла в безвоздушном пространстве до 1800 градусов он превратится в графит.

Известны методы, позволяющие осуществить и обратные превращения.

Как получить драгоценный камень из графита

Получить алмаз можно из графита. При давлении выше 1000 Па и температуре 3000 градусов с добавлением металлов углерод в графите меняет ковалентные связи. Полученные в результате камни мутные и пористые.

Другой метод – это применение ударной волны, после которой можно любоваться чистыми, прозрачными кристаллами правильной геометрической формы, но очень маленького размера.

Несовершенство этих методов привело к выводу, что алмазы лучше всего выращивать. При нагреве бриллианта до 1,5 тысячи градусов он растет. Но это дорого, поэтому сегодня искусственные драгоценности получают из метана.

Физические и химические свойства

Алмаз не обладает электропроводностью, но тепло проводит. Хорошо преломляет и отражает свет. Прозрачен, имеет блеск. Плавится при 3700-4000 градусов. Лавуазье впервые сжег диамант в 18 веке.

Позже ученые выяснили, что в соединении с кислородом алмаз горит при 721-800 градусах, испаряясь углекислым газом. Без воздуха может перейти в графит при нагреве до 2001-3000 градусов. Химические свойства говорят об устойчивости к воздействию кислот.

Графит электро-и-теплопроводный, нерастворим кислотами и водой, теплостойкий. Температура плавления 2500 – 3000 градусов. Не горит до 250-300 градусов, но при сжигании с температурой выше 300 и до 1000 превращается в углекислый газ.

Сравнительная характеристика

Сравним строение алмаза и графита и их физические свойства: твердость, теплопроводность, электропроводность, особенности химической связи.

О характеристиках минералов расскажет подробная сравнительная таблица:


Бакаева Анастасия

Всё началось с простого карандаша! А вернее с его стержня. На уроке физики мы проходили тему «Строение твёрдых, жидких и газообразных тел», и оказалось, что углерод, графит и алмаз «родственники». Но как, же так, ведь углерод – это газ, а графит и алмаз, твёрдые вещества, обладающие кристаллическими решётками, но графит – «пишет», а алмаз настолько твёрдый, что им можно резать стекло и металлы, и украшать ювелирные изделия! Нам стало интересно. Оказывается, стержень (грифель) простого карандаша - это специально обработанная смесь графита, глины, воска. Когда мы рисуем, происходит расслоение кристаллической решётки графита и его атомы ложатся на поверхность шестиугольными плоскостями, а в состав цветных карандашей графит не входит! Просто так, для справки, приведу ориентировочный состав цветного карандаша: Органический краситель пластификатор (стеарин, например, из которого делают свечки) тальк (кстати, самый мягкий минерал по шкале Мооса) каолин (белая глина, её используют в производстве фарфора и ещё в косметике) клей КМЦ (KарбоксиМетилЦеллюлоза) - здесь связующее вещество. О как интересно! Мы подготовили небольшое сообщение о карандаше, а учитель предложила расширить эту тему и превратить её в исследовательский проект.

Скачать:

Предварительный просмотр:

МОУ «СОШ № 2 г. Ершов Саратовская область»

Исследовательский проект

Углерод, графит, алмаз

Бакаева Анастасия

8 «А» класс

руководитель: учитель физики I категории Филиппова Е.В.

2015

Введение

Основная часть

  1. Историческая справка
  1. Углерод
  1. Графит
  1. Алмаз

Практическая часть

  1. Изготовление моделей кристаллических решёток

Графит

Алмаз

  1. Выращивание кристаллов медного купороса

Заключение

Список литературы

Приложения

Введение

Всё началось с простого карандаша! А вернее с его стержня. На уроке физики мы проходили тему «Строение твёрдых, жидких и газообразных тел», и оказалось, что углерод, графит и алмаз «родственники». Но как, же так, ведь углерод – это газ, а графит и алмаз, твёрдые вещества, обладающие кристаллическими решётками, но графит – «пишет», а алмаз настолько твёрдый, что им можно резать стекло и металлы, и украшать ювелирные изделия! Мне стало интересно. Оказывается, стержень (грифель) простого карандаша - это специально обработанная смесь графита, глины, воска. Когда мы рисуем, происходит расслоение кристаллической решётки графита и его атомы ложатся на поверхность шестиугольными плоскостями, а в состав цветных карандашей графит не входит! Просто так, для справки, приведу ориентировочный состав цветного карандаша:

  • Органический краситель
  • пластификатор (стеарин, например, из которого делают свечки)
  • тальк (кстати, самый мягкий минерал по шкале Мооса)
    каолин (белая глина, её используют в производстве фарфора и ещё в косметике)
  • клей КМЦ (KарбоксиМетилЦеллюлоза) - здесь связующее вещество.

О как интересно!

Мы подготовили небольшое сообщение о карандаше, а учитель предложила расширить эту тему и превратить её в исследовательский проект.

Цели работы:

Изучить строение, физические свойства углерода, графита и алмаза

Узнать о применении углерода, графита и алмаза в технике, промышленности, ювелирном производстве и науке

Узнать о создании искусственных алмазов

Задачи

Создать наглядные пособия для изучения кристаллических тел (кристаллические решётки)

Вырастить самостоятельно кристалл медного купороса (он же тоже обладает кристаллической решёткой, как графит, алмаз и даже соль и сахар…)

Историческая справка.

Графит, алмаз и углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название "графит", происходящее от греческого слова, означающего "писать", предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны "черный свинец", "карбидное железо", "серебристый свинец". В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа. Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей. «Углерод встречается в природе как в свободном, так и в соединенном состоянии, в весьма различных формах и видах. В свободном состоянии углерод известен по крайней мере в трех видах: в виде угля, графита и алмаза. В состоянии соединений углерод входит в состав так называемых органических веществ, т.е. множества веществ, находящихся в теле всякого растения и животного. Он находится в виде углекислого газа в воде и воздухе, а в виде солей углекислоты и органических остатков в почве и массе земной коры. Разнообразие веществ, составляющих тело животных и растений, известно каждому. Воск и масло, скипидар и смола, хлопчатая бумага и белок, клеточная ткань растений и мускульная ткань животных, винная кислота и крахмал – все эти и множество иных веществ, входящих в ткани и соки растений и животных, представляют соединения углеродистые. Область соединений углерода так велика, что составляет особую отрасль химии, т.е. химии углеродистых или, лучше, углеводородистых соединений».

Углерод

Растения добывают углерод из углекислого газа - двуокиси углерода - содержащегося в атмосфере, и используют его как строительный материал для корней, стеблей и листьев. Животные получают его, поедая эти растения. А в почве он накапливается при разложении тел умерших существ. Из всех форм существования чистого углерода наиболее известным и, возможно, наиболее ценным для людей является уголь. Он примерно на 4/5 состоит из углерода, а остаток составляют водород и другие элементы. Ценность угля проистекает из химических свойств углерода, главным из которых является то, что он охотно взаимодействует с кислородом. Этот процесс протекает при сжигании угля на воздухе, при этом выделяется большое количество тепловой энергии, которую можно использовать для самых различных целей. Однако углерод в неживой природе можно обнаружить не только в виде угля. Две другие формы его существования в чистом виде, резко отличающиеся друг от друга,- графит и алмаз. Графит очень мягкий и жирный на ощупь. Он служит прекрасным смазочным материалом для многих механизмов. И еще, как вы знаете, из него изготовляют грифели карандашей. В этом случае графит смешивается с глиной для уменьшения его мягкости. Алмазы, напротив, являются самыми прочными из веществ, известных человеку. Их используют для создания особо прочных резцов, а также ювелирных украшений. Атомы углерода могут образовывать связи между собой и с атомами других элементов. В результате получается огромное множество углеродных соединений. Углерод входит в состав растений и животных (~18 %). Кругооборот углерода в природе включает биологический цикл, выделение СО 2 в атмосферу при сгорании ископаемого топлива , из вулканических газов, горячих минеральных источников, из поверхностных слоев океанических вод и др. Биологический цикл состоит в том, что углерод в виде СО 2 поглощается из тропосферы растениями. Затем из биосферы вновь возвращается в геосферу : с растениями углерод попадает в организм животных и человека, а затем при гниении животных и растительных материалов - в почву и в виде СО 2 - в атмосферу. В парообразном состоянии и в виде соединений с азотом и водородом углерод обнаружен в атмосфере Солнца , планет, он найден в каменных и железных метеоритах . Углерод реагирует со многими элементами с образованием карбидов (Карби́ды - соединения металлов и неметаллов с углеродом ). Углерод широко используется в металлургии. (Металлургия - совокупность связанных между собой отраслей и стадий производственного процесса от добычи сырья до выпуска готовой продукции - чёрных и цветных металлов и их сплавов ). Благодаря способности углерода образовывать полимерные цепочки, существует огромный класс соединений на основе углерода, которых значительно больше, чем неорганических, и изучением которых занимается органическая химия . Среди них наиболее обширные группы: углеводороды , белки , жиры и др. Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент. Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод - основа жизни. Источником углерода для живых организмов обычно является углекислый газ из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа пожирают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти. Углерод в виде ископаемого топлива: угля и углеводородов (нефть , природный газ ) - один из важнейших источников энергии для человечества . Углерод в сталелитейной промышленности один из важнейших компонентов сплавов железо-углерод (производство чугуна и стали ). Углерод входит в состав атмосферных аэрозолей, в результате чего может изменяться региональный климат, уменьшаться количество солнечных дней. Частицы углерода поглощают солнечное излучение, что может вызвать нагревание поверхности Земли. Углерод поступает в окружающую среду в виде сажи в составе выхлопных газов автотранспорта, при сжигании угля на ТЭС (Тепловая электростанция), при открытых разработках угля, подземной его газификации, получении угольных концентратов и др. Концентрация углерода над источниками горения 100-400 мкг/м³, крупными городами 2,4-15,9 мкг/м³, сельскими районами 0,5 - 0,8 мкг/м³. С газоаэрозольными выбросами АЭС в атмосферу поступает (6-15) 10 9 Бкг/сут углекислого газа. Высокое содержание углерода в атмосферных аэрозолях ведет к повышению заболеваемости населения, особенно верхних дыхательных путей и легких . Профессиональные заболевания - в основном антракоз и пылевой бронхит . Содержание углерода в атмосферном воздухе максимальная разовая 0,15, среднесуточная 0,05 мг/м³. Токсическое действие углерода, вошедшего в состав молекул белков (особенно в ДНК и РНК ), определяется радиационным воздействием бета частиц и ядер отдачи азота и трансмутационным эффектом - изменением химического состава молекулы в результате превращения атома углерода в атом азота.

Графит

Графит (назван Абрахамом Готтлобом Вернером в 1789 г, (с греческого графен - «тянуть/писать», использовался в карандашах) - один из самых обычных аллотропов углерода. Встречается в природе. Графит является самой устойчивой формой углерода при стандартных условиях. Применяется для изготовления электродов , нагревательных элементов, твердых смазочных материалов, наполнителя пластмасс, замедлителя нейтронов в ядерных реакторах , стержней карандашей , при высоких температурах и давлениях (более 2000 °C и 5 ГПа) для получения синтетического алмаза.

Алмаз


Hobby-live.ru

www.encycl.yandex, www.krugosvet, www.rmika.

Похожие публикации