Энергетические уровни электрона в атоме. Объяснение квантования: корпускулярно-волновой дуализм

Всех людей, существующих в мире, можно разделить на несколько групп по уровню энергетического развития.

  • Уровень 1 . Низшая ступень. Сюда относятся люди с нарушенным и ослабленным энергетическим полем. Часто это представители человечества, имеющие хронические или временные заболевания.
  • Уровень 2 . Часть населения, принадлежащая к европеоидной расе и сознательно не отражающая свое биополе.
  • Уровень 3 . Дает возможность почувствовать не только свое биополе, но и энергетику другого человека. Часто людей, умеющих это делать, именуют экстрасенсами.
  • Уровень 4 . Часть жителей планеты, способных концентрировать энергию и затем направлять ее на живых существ (людей и животных), события, окружающие предметы и на все, что поддается воздействию. К этой группе относят колдунов, владеющих темной и светлой магией (знахари, целители, ведьмы, шаманы, ведуны). В индийских странах подобных людей называют асмерами и хилерами. Также к четвертому уровню причисляют начинающих йогов.
  • Уровень 5 . Пятую группу составляют люди, способные регенерировать и восстанавливать свой организм на клеточном уровне (кроме половых клеток). В природе не существуют людей, одаренных от рождения такой силой. Все, кто обладает энергетикой пятого и шестого уровней проделали колоссальную работу по самосовершенствованию и развитию своего биополя.
  • Уровень 6-8 . Предел осознания своего энергетического поля, которым обладают йоги, индийские волшебники высших ступеней. Такие люди способны воздействовать на судьбу человека и последующих поколений, управлять психикой и сознательно производить прочие серьезные изменения.

Специалист по эзотерике Г. Лэндис выделил более десятка факторов, которые помогают человеку развить свой энергетический уровень.

  1. Выполнение упражнений, способствующих повышению силы биополя.
  2. Ориентация на положительные эмоции вместо отрицательных. Накопление первых и устранение вторых.
  3. Самосозерцание и медитация.
  4. Постоянное общение и контактирование с людьми, относящимися к более высокому энергетическому уровню.
  5. Стремление вобрать в себя как можно больше энергии Вселенной - праны.
  6. Исполнение всех своих обязанностей.
  7. Развитие способности организма получать только полезную энергию из пищи.
  8. Научиться правильно дышать, чтобы газообмен при дыхании происходил интенсивнее.
  9. Развитие физической выносливости.
  10. Выполнение упражнений, направленных на улучшение гибкости позвоночника и суставов.
  11. Получение и сохранение биологической энергии во время сна.
  12. Избегание пустых разговоров и действий, не несущих пользу.
  13. Постоянный контакт с живыми существами (животные и птицы).
  14. Выращивание растений и овощей (разведение цветов, плодовых культур в саду и огороде)
  15. Посвящение себя сфере искусства как хобби.
  16. Вегетарианство или сведение до минимума поедания мяса и блюд из него.

Чтобы развить свое биополе, нет необходимости беспрекословно исполнять каждый пункт, названный в списке. Можно взять несколько приведенных советов, и стараться выполнять их постоянно и в полной мере. Этот вариант будет лучше, чем пытаться следовать всем рекомендациям, но в итоге относится недобросовестно к указанным предписаниям. Было бы хорошо придерживаться пунктов, обозначенных в первой половине списка, так как они наиболее плодотворно влияют на развитие энергетического уровня.

(1887-1961) для описания состояния электрона в атоме водорода. Он объединил математические выражения для колебательных процессов и уравнение де Бройля и получил следующее линейное дифференциальное однородное уравнение:

где ψ - волновая функция (аналог амплитуды для волнового движения в классической механике), которая характеризует движение электрона в пространстве как волнообразное возмущение; x , y , z - координаты, m - масса покоя электрона, h - постоянная Планка, E - полная энергия электрона, E p - потенциальная энергия электрона.

Решениями уравнения Шрёдингера являются волновые функции. Для одноэлектронной системы (атома водорода) выражение для потенциальной энергии электрона имеет простой вид:

E p = −e 2 / r ,

где e - заряд электрона, r - расстояние от электрона до ядра. В этом случае уравнение Шрёдингера имеет точное решение.


Чтобы решить волновое уравнение, надо разделить его переменные. Для этого заменяют декартовы координаты x , y , z на сферические r , θ, φ. Тогда волновую функцию можно представить в виде произведения трех функций, каждая из которых содержит только одну переменную:

ψ(x ,y ,z ) = R (r ) Θ(θ) Φ(φ)

Функцию R (r ) называют радиальной составляющей волновой функции, а Θ(θ) Φ(φ) - ее угловыми составляющими.

В ходе решения волнового уравнения вводятся целые числа - так называемые квантовые числа (главное n , орбитальное l и магнитное m l ). Функция R (r ) зависит от n и l , функция Θ(θ) - от l и m l , функция Φ(φ) - от m l .

Геометрическим образом одноэлектронной волновой функции является атомная орбиталь . Она представляет собой область пространства вокруг ядра атома, в которой высока вероятность обнаружения электрона (обычно выбирают значение вероятности 90-95%). Это слово происходит от латинского "орбита " (путь, колея), но имеет другой смысл, не совпадающий с понятием траектории (пути) электрона вокруг атома, предложенным Н. Бором для планетарной модели атома. Контуры атомной орбитали - это графическое отображение волновой функции, полученной при решении волнового уравнения для одного электрона.

Квантовые числа

Квантовые числа, возникающие при решении волнового уравнения, служат для описания состояний квантово-химической системы. Каждая атомная орбиталь характеризуется набором из трех квантовых чисел: главного n , орбитального l и магнитного m l .

Главное квантовое число n характеризует энергию атомной орбитали. Оно может принимать любые положительные целочисленные значения. Чем больше значение n , тем выше энергия и больше размер орбитали. Решение уравнения Шрёдингера для атома водорода дает следующее выражение для энергии электрона:

E = −2π 2 me 4 / n 2 h 2 = −1312,1 / n 2 (кДж/моль)

Таким образом, каждому значению главного квантового числа отвечает определенное значение энергии электрона. Уровни энергии с определенными значениями n иногда обозначают буквами K , L , M , N ... (для n = 1, 2, 3, 4...).

Орбитальное квантовое число l характеризует энергетический подуровень. Атомные орбитали с разными орбитальными квантовыми числами различаются энергией и формой. Для каждого n разрешены целочисленные значения l от 0 до (n −1). Значения l = 0, 1, 2, 3... соответствуют энергетическим подуровням s , p , d , f .


Форма s -орбиталей сферическая, p -орбитали напоминают гантели, d - и f -орбитали имеют более сложную форму.

Магнитное квантовое число m l отвечает за ориентацию атомных орбиталей в пространстве. Для каждого значения l магнитное квантовое число m l может принимать целочисленные значения от −l до +l (всего 2l + 1 значений). Например, р -орбитали (l = 1) могут быть ориентированы тремя способами (m l = -1, 0, +1).

Электрон, занимающий определенную орбиталь, характеризуется тремя квантовыми числами, описывающими эту орбиталь и четвертым квантовым числом (спиновым ) m s , которое характеризует спин электрона - одно из свойств (наряду с массой и зарядом) этой элементарной частицы. Спин - собственный магнитный момент количества движения элементарной частицы. Хотя это слово по-английски означает "вращение ", спин не связан с каким-либо перемещением частицы, а имеет квантовую природу. Спин электрона характеризуется спиновым квантовым числом m s , которое может быть равно +1/2 и −1/2.

Квантовые числа для электрона в атоме:

Энергетические уровни и подуровн и

Совокупность состояний электрона в атоме с одним и тем же значением n называют энергетическим уровнем . Число уровней, на которых находятся электроны в основном состоянии атома, совпадает с номером периода, в котором располагается элемент. Номера этих уровней обозначают цифрами: 1, 2, 3,... (реже - буквами K , L , M , ...).

Энергетический подуровень - совокупность энергетических состояний электрона в атоме, характеризующихся одними и теми же значениями квантовых чисел n и l . Подуровни обозначают буквами: s , p , d , f ... Первый энергетический уровень имеет один подуровень, второй - два подуровня, третий - три подуровня и так далее.

Если на схеме орбитали обозначить в виде ячеек (квадратных рамок), а электроны - в виде стрелок ( или ↓), то можно увидеть, что главное квантовые число характеризуют энергетический уровень (ЭУ), совокупность главного и орбитального квантовых чисел - энергетический подуровень (ЭПУ), совокупность главного, орбитального и магнитного квантовых чисел - атомную орбиталь , а все четыре квантовые числа - электрон.


Каждой орбитали отвечает определенная энергия. Обозначение орбитали включает номер энергетического уровня и букву, отвечающую соответствующему подуровню: 1s , 3p , 4d и т.п. Для каждого энергетического уровня, начиная со второго, возможно существование трех равных по энергии p -орбиталей, расположенных в трех взаимно перпендикулярных направлениях. На каждом энергетическом уровне, начиная с третьего, имеется пять d -орбиталей, имеющих более сложную четырехлепестковую форму. Начиная с четвертого энергетического уровня, появляются еще более сложные по форме f -орбитали; на каждом уровне их семь. Атомную орбиталь с распределенным по ней зарядом электрона нередко называют электронным облаком.

Электронная плотность

Пространственное распределение заряда электрона называется электронной плотностью. Исходя из того, что вероятность нахождения электрона в элементарном объеме dV равна |ψ| 2 dV , можно рассчитать функцию радиального распределения электронной плотности.

Если за элементарный объем принять объем шарового слоя толщиной dr на расстоянии r от ядра атома, то

dV = 4πr 2 dr ,

а функция радиального распределения вероятности нахождения электрона в атоме (вероятности электронной плотности), равна

W r = 4πr 2 |ψ| 2 dr

Она представляет собой вероятность обнаружения электрона в сферическом слое толщиной dr на определенном расстоянии слоя от ядра атома.


Для 1s -орбитали вероятность обнаружения электрона максимальна в слое, находящемся на расстоянии 52,9 нм от ядра. По мере удаления от ядра атома вероятность обнаружения электрона приближается к нулю. В случае 2s -орбитали на кривой появляются два максимума и узловая точка, где вероятность обнаружения электрона равна нулю. В общем случае для орбитали, характеризующейся квантовыми числами n и l , число узлов на графике функции радиального распределения вероятности равно (n l − 1).

Опыты по рассеянию - частиц обнаружили существование в атомах тяжелого положительного ядра и электронной оболочки. Дальнейшие сведения о свойствах атомов дало изучение таких атомных процессов, которые сопровождаются изменением внутренней энергии атома. Сюда относятся столкновения атомов с электронами, испускание и поглощение света атомами и др. Исследуя эти процессы, удалось установить своеобразные и очень важные закономерности, которым подчиняется внутренняя энергия атомов.

Столкновения электронов с атомами. Наиболее простые условия для изучения передачи энергии от электронов к атомам могут быть осуществлены в устройстве, изображенном на рис. 359. Из трубки 1 выкачан воздух, и в нее введено небольшое количество одноатомных паров какого-нибудь вещества, например ртути. Электроны, испускаемые накаленным катодом 2, ускоряются разностью потенциалов действующей между катодом 2 и металлической сеткой 4. Благодаря очень малой концентрации атомов электроны пролетают короткий путь между катодом и первой сеткой без столкновений и приобретают энергию .

Рис. 359. Устройство для измерения потери энергии электроном при движении в парах ртути: 1 – стеклянная трубка заполненная парами ртути (давление тысячи доли ), 2 – накаленный катод (нагреватель на чертеже не указан); 3 – анод, 4 и 5 – редкие металлические сетки, соединенные между собой, и ускоряющая и тормозящая разность потенциалов

За первой сеткой 4 на пути между нею и второй сеткой 5 электрическое поле равно нулю, так как сетки находятся при одинаковом потенциале, и энергия электрона может измениться только за счет соударения с атомом. Путь между сетками выбирается достаточно длинным, так что каждый электрон испытывает хотя бы одно соударение. Далее, на пути между второй сеткой и анодом действует разность потенциалов , тормозящая электроны; ввиду этого до анода могут дойти только те электроны, энергия которых больше .

Постепенно увеличивая , определим запирающую разность потенциалов, т. е. то наименьшее значение , при котором электроны не доходят до анода и ток через гальванометр прекращается. Измерив запирающую разность потенциалов, можно установить, теряют ли электроны энергию при столкновениях с атомами. В самом деле, если на пути между сетками электроны не теряют энергии, то запирающая разность потенциалов будет равна ускоряющей; в противном случае она будет меньше. При этом, если каждый электрон отдает энергию , то превышение ускоряющего напряжения над тормозящим составит .

Опыты такого рода, проведенные с парами ртути, дали замечательный результат. Оказалось, что передача энергии от электронов к атомам существенно зависит от энергии электрона. Пока энергия электронов меньше, чем (т. е. ), электроны вовсе не теряют энергии при соударениях с атомами (т. е. ). Но когда энергия электронов достигает (или немного превышает) (), потеря энергии при соударениях сразу становится большой (т. е. ). При этом при столкновении электрон отдает, а значит, атом ртути воспринимает всегда о дну и ту же порцию энергии, равную . Очевидно, эта величина характеризует свойство атома ртути: энергия его может меняться только на конечную величину, равную . Меньшую энергию атом ртути не воспринимает.

При изучении механики, теплоты, электричества мы не встречались с подобным явлением: энергия любого тела или системы тел в принципе могла изменяться непрерывно, т. е. сколь угодно малыми порциями. В случае же атома ртути непрерывное изменение энергии невозможно - энергия ртутного атома меняется только прерывно, т. е. на конечную величину.

Делая соответствующие опыты с другими веществами, мы приходим к тому же заключению о прерывности {дискретности) энергетических состояний атомов.

Исследование оптических спектров. Как известно (§ 173), элементы в газообразном состоянии обладают линейчатыми спектрами испускания и поглощения света. Каждому элементу свойственны определенные спектральные линии, отличные от линий других элементов. Так как атомы газа находятся в среднем на больших расстояниях и не влияют друг на друга, частоты линейчатого спектра элемента должны определяться свойствами отдельного атома этого элемента.

В гл. XXI мы выяснили, что световая энергия существует в виде мельчайших неделимых порций - квантов; атомы должны, следовательно, изучать и поглощать свет такими же порциями, квантами. Энергия кванта пропорциональна частоте света , т. е. равна , где - постоянная Планка. Энергия испущенного атомом кванта по закону сохранения энергии равна разности энергий атома до после излучения, т. е.

где - энергия начального состояния атома (до излучения); - энергия конечного состояния атома (после излучения).

Соотношение (204.1) связывает изменение энергии атома при испускании или поглощении света с частотой последнего . Если бы энергия атома могла испытывать всевозможные изменения, то в атомном спектре присутствовали бы всевозможные частоты и он был бы сплошным подобно спектру раскаленного твердого тела. В действительности же атомный спектр (т. е. спектр испускания или поглощения одноатомного газа) не сплошной, а линейчатый. Он содержит только некоторые определенные характерные для данного атома частоты. Следовательно, энергия атома не может испытывать всевозможные, любые изменения. Энергия атома может изменяться только на некоторые определенные значения. Зная спектр вещества, нетрудно найти эти значения с помощью соотношения (204.1).

Так, например, спектр поглощения ртутного пара содержит следующие линии (в порядке убывания длин волн); и т. д. Подставляя в (204.1), находим для первой линии

Для второй и третьей линий получаем соответственно и . Атом ртути может, таким образом, воспринимать энергию только в виде порций, равных и т. д. Наименьшая воспринимаемая порция оказывается равной в согласии с результатом, полученным из опытов по соударениям электронов с атомами.

Итак, оба рассмотренных нами класса явлений - оптические спектры и взаимодействие атомов с электронами - указывают на прерывный (дискретный) характер внутренней энергии атомов. Энергия атома не может изменяться непрерывно. Она изменяется скачками на определенные, конечные порции, различные для разных атомов. Отсюда следует, что энергия атома не может быть любой, а может принимать только некоторые избранные значения, характерные для каждого атома. Возможные значения внутренней энергии атома получили название энергетических или квантовых уровней.

Схема энергетических уровней атома водорода, построенная на основании спектральных данных, изображена на рис. 360 в виде ряда параллельных линий. Расстояние между двумя линиями равно разности энергий двух состояний водородного атома и, следовательно, пропорционально частоте кванта, излучаемого при переходе из одного состояния в другое (более низкое). Поэтому расстояния между уровнями выражают в некотором масштабе частоты спектральных линий водорода.

на уровень и т. д. (см. также § 175)

Атом, находящийся в одном из высших энергетических состояний (обозначенных номером на рис. 360), через небольшой промежуток времени (около ) перейдет в более бедное энергией состояние, испуская соответствующий квант. Из низшего энергетического состояния атом не может самопроизвольно (без сообщения энергии извне) перейти в другое состояние. Следовательно, низшее состояние является устойчивым). При нормальных условиях все атомы находятся в низшем энергетическом состоянии, и газ не светится.

Сообщая атому энергию, мы можем возбудить его, т. е. перевести из нормального (низшего) состояния в одно из высших энергетических состоянии. В случае водорода расстояние от низшего энергетического уровня до ближайшего высшего уровня составляет . Это наименьшая порция энергии и, которую находящийся в низшем состоянии водородный атом может поглотить. Меньшей энергии атом водорода не может воспринять, ибо у него не существует состояний, энергия которых отличается от энергии нормального состояния меньше чем на . Для атома ртути аналогичная величина равна, как мы видели, .

При изучении мы узнали, чему равно максимальное число электронов на каждой орбитали, на различных энергетических уровнях и подуровнях.

Что еще нужно знать для установления строения электронной оболочки атома любого элемента? Для этого нужно знать порядок заполнения орбиталей электронами.

Порядок заполнения электронами атомных орбиталей определяет принцип наименьшей энергии (принцип минимума энергии):

Основное (устойчивое) состояние атома - это такое состояние, которое характеризуется минимальной энергией. Поэтому электроны заполняют орбитали в порядке увеличения их энергии.

Орбитали одного подуровня имеют одинаковую энергию.

Например, три орбитали данного р-подуровня имеют одинаковую энергию.

Поэтому принцип наименьшей энергии определяет порядок заполнения энергетических подуровней: электроны заполняют энергетические подуровни в порядке увеличения их энергии.

Как показывает рисунок ниже, наименьшую энергию имеет 15-подуровень, который первым заполняется электронами.

Затем последовательно заполняется электронами следующие подуровни: 2s, 2р, 3s, 3р. После 3р-подуровня электроны заполняют 4, подуровень, так как он имеет меньшую энергию, чем 3d-подуровень.

Это объясняется тем, что энергия подуровня определяется суммой главного и побочного квантовых чисел, т. е. суммой (n + l ). Чем меньше эта сумма, тем меньше энергия подуровня. Если суммы n + l одинаковы для разных подуровней, то их энергия тем меньше, чем меньше главное квантовое число n. Изложенные правила были сформулированы в 1951 г. советским ученым В. М. Клечковским (правила Клечковского ).

На подуровнях, которые показаны на рисунке, может разместиться 112 электронов. В атомах известных элементов находится от 1 до 110 электронов. Поэтому другие подуровни в основных состояниях атомов не заполняются электронами.

Наконец, осталось выяснить вопрос, в каком порядке электроны заполняют орбитам одного подуровня. Для этого нужно познакомиться с правилом Гунда :

На одном подуровне электроны располагаются так, чтобы абсолютное значение суммы спиновых квантовых чисел (суммарного спина) было максимальным. Это соответствует устойчивому состоянию атома.

Рассмотрим, например, какое расположение трех электронов на р-подуровне соответствует устойчивому состоянию атома:

Рассчитаем абсолютное значение суммарного спина для каждого состояния:

Строение электронных оболочек (электронные конфигурации) атомов элементов I IV периодов

Чтобы правильно изобразить электронные конфигурации различных атомов, нужно знать:

1) число электронов в атоме (равно порядковому номеру элемента);

2) максимальное число электронов на уровнях, подуровнях;

3) порядок заполнения подуровней и орбиталей.

Элементы I периода:

В таблицах представлены схемы электронного строения, электронные и электронно-графические формулы атомов элементов II, III и IV периодов.

Элементы II периода:

Элементы III периода:

Элементы IV периода:

Возрастает и при n®¥ , E®0.

Уровни значений полной энергии атома водорода представлены на рис.77.

С возрастанием квантового числа увеличивается расстояние (радиус орбиты, по которой движется электрон), а полная и потенциальная энергия стремится к нулю. Кинетическая энергия также стремится к нулю и область E > 0 соответствует состоянию свободного электрона.

Кроме главного квантового числа n = 1, 2, 3 состояние атома характеризуется орбитальным l = 0, 1, 2, n-1, определяющим форму орбиты, магнитным m 1 = -1, -1, 0, +1, +1 (ориентация орбиты в пространстве), магнитным спиновым m s = -1/2; +1/2 (собственное вращение электрона в атоме).

То есть для одинакового главного квантового числа существует множество состояний электрона (энергетических состояний), распределение, которых удовлетворяет двум принципам:

1. В атоме состояние всех электронов различны, то есть не может быть электронов, имеющих одинаковую комбинацию квантовых чисел (принцип исключения ) - установлен в 1925 году швейцарским физиком В. Паули ].

2. Распределение электронов в атоме должно соответствовать минимуму энергии атома (принцип минимума энергии ).

Общее число электронов в атоме определяется зарядом его ядра, выраженным через элементарный заряд. У атома с минимальной энергией (невозбужденного) электроны заполняют ближайшие к ядру слои, имеющим n оболочек (от 0 до n-1) с определенным количеством электронов в каждой из них.

Построение этой теории стало возможным благодаря тщательным исследованиям спектров излучения различных газов (спектров излучения атомов), в результате которых были обнаружены спектральные линии, расположенные по определенной закономерности. В атоме водорода, например, эта закономерность определена формулой Бальмера-Ридберга

, (170)

где с -1 - постоянная Ридберга , n и n 0 - квантовые числа, соответствующие начальному (до излучения) и конечному (после излучения) энергетическим состояниям атома.

При переходе электрона с одной стационарной орбиты на другую (ближнюю к ядру) атом излучает квант энергии, равный разности энергий атома до и после излучения .

В спектре можно выделить группы линий, которые получили название спектральных серий. Каждая серия соответствует переходам возбужденного атома на один и тот же энергетический уровень (рис.78)

Серия Лаймана расположена в ультрафиолетовой части спектра. Она образуется в результате перехода электронов с верхних энергетических уровней на основной (n=1). Из формулы (45) следует


, n= 2,3,4…… (171)

Интенсивность возрастает с уменьшением длины волны.

Серия Бальмера находится в видимой и близкой к ультрафиолетовой областях спектра. Она обнаружена в 1885 году швейцарским физиком Бальмером и является, по сути, началом построения квантовой теории атома. Из (22) для этой серии следует

, n= 3,4,5….. (172)

Серия Пашена находится в инфракрасной области спектра. Она возникает при переходе электронов на третий энергетический уровень. Из (22) следует

, n= 4,5,6….. (173)

Существуют и другие серии, однако спектр ограничен, так как энергетические уровни атома по мере увеличения главного квантового числа сближаются и вероятность перехода между ними мала, поэтому они практически не наблюдаются.

Основные параметры спектральных линий представлены в таблице 2.

Таблица 2 - Основные параметры спектральных линий

В спектральном анализе используются как спектры излучения (эмиссионные) - спектральный анализ, так и спектры поглощения - абсорбционный анализ. Внешний вид спектров разнообразен и определяется источником излучения. Различают три основных типов спектров - сполошные, линейчатые и полосатые (см. глава 1 часть III).

В сплошном спектре имеются все длины волн (цвета) непрерывно изменяющиеся от длинноволновой части спектра к коротковолновой. Они образуются в результате совокупности многих взаимодействий между собой молекул и атомов при их хаотическом движении.

Линейчатые спектры состоят из ряда линий, каждой из которых соответствует определенная частота излучения. Они характерны для возбужденных атомов, не взаимодействующих друг с другом.

Полосатые спектры образуются молекулами. Излучение вызвано как электронными переходами в атомах, так и колебательными движениями самих атомов в молекулах. Эти спектры состоят из большого числа линий расположенных отдельными группами. Сложность молекулярных спектров обусловлена более сложным внутримолекулярным движением.

Квантовая теория строения атома достаточно убедительно объясняет такие физические явления как люминесценция, фотоэффект и световое давление, а также все наблюдаемые закономерности теплового излучения.

Похожие публикации