Плавление алмазов: температура и эффект. Сложности выявления температуры плавления алмаза Температура плавления бриллианта

Температура плавления алмаза - это одна из характеристик драгоценности, которая до сих пор не изучена в полном объеме. Камень имеет уникальные свойства, которые ценятся не только в ювелирном деле, но и в промышленности. И температура плавления не стала исключением из правил.

Некоторые минералоги и исследователи объясняют такие странные характеристики алмаза его космическим происхождением. То есть, предполагают, что материал попал на планету после падения большого количества метеоритов и остался в недрах земли.

Базовые характеристики алмаза

В качестве примера можно привести то, что алмаз обладает наивысшей твердостью по шкале Мооса, при этом камень хрупкий. Вещество является диэлектриком и изолятором. Алмаз обладает самой прочной упаковкой, то есть кристаллической решеткой. Структура состоит из одного атома углерода, который в природе является горючим и имеет аллотропные модификации. Самой известной формой элемента, помимо алмаза, является графит.

Ученые неоднократно проводили опыты, а также эксперименты, которые были связаны с модификациями углерода. В частности, во время плавления хотели добиться и посмотреть, не будет ли перехода алмаза в графит и наоборот. Одними из последних исследователей, которые занимались вопросом плавления, была группа физиков из университета в Калифорнии. Опыт проводился в 2010 году, и целью ученых был перевод алмаза в жидкое состояние.

Температура плавления алмаза

Сложность заключалась в том, что с повышением температуры вещество превращается в графит. Поэтому, вместе с температурой, приходилось повышать и давление. Интересно, что в обратную сторону процесс провести нельзя: графит не превращается в алмаз без затравки даже под действием высоких температур.

Показатель плавления вещества

Если верить уже проведенным исследованиям, то показатели плавления алмаза находятся на таком уровне:

С доступом кислорода вещество сгорает при температуре 850-1000 градусов Цельсия. Алмаз горит синим пламенем, после чего исчезает бесследно, превратившись в углекислый газ. В этом убедились ученые из Италии Тарджони и Аверани на собственном опыте. Еще в 1694 году они решили провести эксперимент и соединить два мелких бриллианта в один крупный. Несколько попыток закончилось сгоранием драгоценностей.

  • Плавного расплавления добиться очень сложно. Для этого необходимо проводить эксперименты без доступа кислорода и в устройствах с переменой давления.
  • Без доступа кислорода горение алмаза происходит при повышении показателей температуры до 1800-2000 градусов Цельсия, и вещество превращается в графит.
  • Плавление происходит на уровне 3700-4000 градусов Цельсия, но достичь таких температур в лабораториях получается с большим трудом.

Кривую плавления алмаза построить тяжело, она получается аномальной, учитывается и наличие кислорода в процессе. Сходства и стандартов, как у других веществ, нет. Поэтому показатель неточный и может измениться после очередных экспериментов.

Ученые взяли алмаз небольшого веса, и плавление происходило под действием ударной волны. Волну создавали наносекундные лазерные импульсы. Жидкий алмаз, то есть расплавленный материал, действительно был получен в ходе эксперимента при давлении в 40 миллионов атмосфер.

Но при постепенном повышении давления и температуры до 50 000 по Кельвину на жидкой поверхности алмаза стали появляться твердые частицы. При этом неожиданным открытием стало то, что частицы не тонут в жидкости, а плавают, как кубики льда, напоминая айсберги. Жидкость не меняется и не кипит в процессе дальнейшего нагревания. При понижении давления и сохранении температуры на том же уровне частицы становились больше и склеивались в одно целое. В дальнейшем алмаз постепенно переходил в твердое состояние. Несколько «айсбергов» склеиваются между собой, жидкость не испаряется в процессе.

В обычных условиях на земле такого состояния углерода добиться нельзя. Но исследователи думают, что в недрах таких планет, как Нептун и Уран, углерод содержится именно в таком кипящем состоянии. Там есть целые океаны кипящих алмазов.

Подтверждения или материалов на эту тему нет, но большинство ученых согласно с гипотезой. А также это предположение объясняет странное действие магнитных полей планет. Эти небесные тела являются единственными в Солнечной системе, у кого нет четких географических полюсов, они все время перемещаются. Тщательнее исследовать планеты не получается, поскольку моделирование ситуации на земле или отправление экспедиций к этим планетам - дорогостоящий и трудоемкий процесс.

А вот еще один эксперимент был посвящен превращению алмаза в углекислый газ. Для этого ученые воздействовали на алмаз мощными ультрафиолетовыми лучами, после чего в камне образовывались углубления в месте воздействия. Камень выгорает и переходит в газообразное агрегатное состояние.

Производство лазеров на основе алмазов - изобретение, не имеющее смысла. Такие приборы ломаются и становятся непригодными к использованию. Но, конечно, не стоит переживать о том, можно ли носить камень летом под действием солнца - обычный ультрафиолет не повредит алмазу. Чтоб удалить один микрограмм минерала, нужно выдерживать камень под ультрафиолетом почти 10 миллиардов лет.

Интересен и тот феномен, что во время пайки изделий с бриллиантами в ювелирных магазинах, камень поддается нагреванию и обработке. Часто ювелиры паяют изделия с бриллиантами. Но такие действия могут закончиться помутнением камня, и владельцу придется отдавать его на переогранку. Опасно находиться над горелкой бриллиантам с микротрещинами или другими повреждениями - хрупкий камень рассыплется на части.

Каждый эксперимент внес свой вклад в исследование вещества под названием алмаз. К сожалению, до конца феномен плавления алмаза объяснить не удается. Зато новым ученым есть к чему стремиться, поле для исследований готово и человечество ждет открытий. Характеристика алмаза пригодится в производстве и в искусственном выращивании вещества. А также она поможет в исследовании космоса.

Физико-механические свойства

Главные отличительные черты алмаза - высочайшая среди минералов твёрдость (но в то же время хрупкость), наиболее высокая теплопроводность среди всех твёрдых тел 900-2300 Вт/(м·К) , большие показатель преломления и дисперсия . Алмаз является диэлектриком . У алмаза очень низкий коэффициент трения по металлу на воздухе - всего 0,1, что связано с образованием на поверхности кристалла тонких плёнок адсорбированного газа, играющих роль своеобразной смазки. Когда такие плёнки не образуются, коэффициент трения возрастает и достигает 0,5-0,55. Высокая твёрдость обусловливает исключительную износостойкость алмаза на истирание. Для алмаза также характерны самый высокий (по сравнению с другими известными материалами) модуль упругости и самый низкий коэффициент сжатия. Энергия кристалла составляет 10 5 Дж/г-ат, энергия связи 700 Дж/г-ат - менее 1 % от энергии кристалла.

Температура плавления алмаза составляет 3700-4000 °C при давлении 11 ГПа. На воздухе алмаз сгорает при 850-1000 °C, а в струе чистого кислорода горит слабо-голубым пламенем при 720-800 °C, полностью превращаясь в конечном счёте в углекислый газ. При нагреве до 2000 °C без доступа воздуха алмаз переходит в графит за 15-30 минут . Средний показатель преломления бесцветных кристаллов алмаза в жёлтом цвете равен примерно 2,417, а для различных цветов спектра он варьируется от 2,402 (для красного) до 2,465 (для фиолетового). Способность кристаллов разлагать белый свет на отдельные составляющие называется дисперсией . Для алмаза дисперсия равна 0,063.

Одним из важных свойств алмазов является люминесценция . Под действием солнечного света и особенно катодных , ультрафиолетовых и рентгеновских лучей алмазы начинают люминесцировать - светиться различными цветами. Под действием катодного и рентгеновского излучения светятся все разновидности алмазов, а под действием ультрафиолетового - только некоторые. Рентгенолюминесценция широко применяется на практике для извлечения алмазов из породы.

Структура

Каждый цветной бриллиант - совершенно уникальное произведение природы. Существуют редкие цвета алмазов: розовый, синий, зеленый и даже красный .

Примеры некоторых цветных бриллиантов:

  • Портер Родс (голубой).

Диагностика алмаза

Для того, чтобы отличить настоящий алмаз от его имитации, используется специальный «алмазный щуп», измеряющий теплопроводность исследуемого камня. Алмаз имеет намного более высокое значение теплопроводности, чем его заменители. Кроме того, используется хорошая смачиваемость алмаза жиром: фломастер, заправленный специальными чернилами, оставляет на поверхности алмаза сплошную черту, тогда как на поверхности имитации она рассыпается на отдельные капельки .

Нахождение алмазов в природе

Обработанный алмаз

Алмаз - редкий, но вместе с тем довольно широко распространённый минерал. Промышленные месторождения алмазов известны на всех континентах, кроме Антарктиды . Известно несколько видов месторождений алмазов. Уже несколько тысяч лет назад алмазы в промышленных масштабах добывались из россыпных месторождений. Только к концу XIX века , когда впервые были открыты алмазоносные кимберлитовые трубки , стало ясно, что алмазы не образуются в речных отложениях.

О происхождении и возрасте алмазов до сих пор нет точных научных данных. Учёные придерживаются разных гипотез - магматической, мантийной, метеоритной, флюидной, есть даже несколько экзотических теорий. Большинство склоняются к магматической и мантийной теориям, к тому, что атомы углерода под большим давлением (как правило, 50000 атмосфер) и на большой (примерно 200 км) глубине формируют кубическую кристаллическую решётку - собственно алмаз. Камни выносятся на поверхность вулканической магмой во время формирования так называемых «трубок взрыва».

Возраст алмазов, по данным некоторых исследований, может быть от 100 миллионов до 2,5 миллиардов лет.

Известны метеоритные алмазы, внеземного, возможно - досолнечного, происхождения. Алмазы также образуются при ударном метаморфизме при падении крупных метеоритов , например, в Попигайской астроблеме на севере Сибири .

Кроме этого, алмазы были найдены в кровлевых породах в ассоциациях метаморфизма сверхвысоких давлений, например в Кумдыкульском месторождении алмазов на Кокчетавском массиве в Казахстане .

И импактные, и метаморфические алмазы иногда образуют весьма масштабные месторождения, с большими запасами и высокой концентрацией. Но в этих типах месторождений алмазы мелки настолько, что не имеют промышленной ценности.

Добыча и месторождения

Промышленные месторождения алмазов связаны с кимберлитовыми и лампроитовыми трубками, приуроченными к древним кратонам . Основные месторождения этого типа известны в Африке , России , Австралии и Канаде .

Согласно материалам Кимберлийского процесса, мировая добыча алмазов в стоимостном выражении в 2008 году составила $12,732 млрд. (выросла на 6,7 % по сравнению с предыдущим годом).

Поиск алмазов в России вёлся почти полтора века, и только в середине 50-х годов были открыты богатейшие коренные месторождения алмазов в Якутии . 21 августа 1954 года геолог Лариса Попугаева из геологической партии Натальи Николаевны Сарсадских открыла первую кимберлитовую трубку за пределами Южной Африки . Её название было символично - «Зарница». Следующей стала трубка «Мир» , что тоже было символично после Великой Отечественной войны . Была открыта трубка «Удачная» . Такие открытия послужили началом промышленной добычи алмазов на территории СССР. На данный момент львиная доля добываемых в России алмазов приходится на якутские горнообрабатывающие комбинаты. Кроме того, крупные месторождения алмазов находятся на территории Красновишерского района Пермского края , и в Архангельской области : месторождение им. Ломоносова на территории Приморского района и месторождение Верхотина (им. В.Гриба) на территории Мезенского района .

В сентябре 2012 года СМИ сообщили, что учёные рассекретили сведения о крупнейшем в мире месторождении импактных алмазов, расположенном на границе Красноярского края и Якутии . Как утверждает Николай Похиленко (директор ), это месторождение содержит триллионы карат.

Синтетические алмазы

Предпосылки и первые попытки

В 1879 году шотландский химик Джеймс Хэнней обнаружил, что при взаимодействии щелочных металлов с органическими соединениями происходит выделение углерода в виде чешуек графита и предположил, что при проведении подобных реакций в условиях высокого давления углерод может кристаллизоваться в форме алмаза. После ряда экспериментов, в которых смесь парафина , костяного масла и лития длительное время выдерживалась в запаянной нагретой до красного каления стальной трубе, ему удалось получить несколько кристаллов, которые после независимого исследования были признаны алмазами. В научном мире его открытие не было признано, так как считалось, что алмаз не может образовываться при столь низких давлениях и температурах . Повторное исследование образцов Хэннея, проведённое в 1943 году с применением рентгеновского анализа, подтвердило, что полученные кристаллы являются алмазами, однако профессор К. Лонсдейл, проводившая анализ, вновь заявила, что эксперименты Хэннея являются мистификацией .

Синтез

Первым синтезировал алмаз Валентин Николаевич Бакуль в Киеве в ЦКТБ твердосплавного и алмазного инструментана организовал выпуск первых 2000 карат искусственных алмазов; с 1963 г. налажен их серийный выпуск.

Современные способы получения алмазов используют газовую среду, состоящую из 95 % водорода и 5 % углеродсодержащего газа (пропана , ацетилена), а также высокочастотную плазму , сконцентрированную на подложке, где образуется сам алмаз (CVD). Температура газа от 700-850 °C при давлении в тридцать раз меньше атмосферного. В зависимости от технологии синтеза, скорость роста алмазов от 7 до 180 мкм/час на подложке. При этом алмаз осаждается на подложке из металла или керамики при условиях, которые в общем стабилизируют не алмазную (sp3) а графитную (sp2) форму углерода. Стабилизация алмаза объясняется в первую очередь кинематическими процессами на поверхности подложки. Принципиальным условием для осаждения алмаза является возможности подложки образовывать стабильные карбиды (в том числе и при температурах осаждения алмаза: между 700 °C и 900 °C). Так например осаждение алмаза возможно на подложках из Si, W, Cr и не возможно (напрямую, либо только с промежуточными слоями) на подложках из Fe, Co, Ni.

Применение

Основными типами огранки являются:

  • круглая (со стандартным числом 57-ми граней)
  • фантазийная, к которой относятся такие виды огранки, как
«овальная», «груша» (одна сторона овала - острый угол), «маркиза» (овал с двумя острыми углами, в плане похож на стилизованное изображение глаза), «принцесса», «радиант» и пр.

Форма огранки бриллианта зависит от формы исходного кристалла алмаза. Чтобы получить бриллиант максимальной стоимости, огранщики стараются свести к минимуму потери алмаза при обработке. В зависимости от формы кристалла алмаза, при его обработке теряется 55-70 % веса.

Применительно к технологии обработки, алмазное сырье можно условно разделить на три большие группы:

  1. «соублз» - как правило, кристаллы правильной октаэдрической формы, которые вначале должны быть распилены на две части, при этом получаются заготовки для производства двух бриллиантов;
  2. «мэйкблз» - кристаллы неправильной или округлой формы, подвергаются огранке «одним куском»;
  3. «кливаж» - содержат трещину и перед дальнейшей обработкой сначала раскалываются.

Основными центрами огранки бриллиантов являются: Индия , специализирующаяся преимущественно на мелких бриллиантах массой до 0,30 карата; Израиль , гранящий бриллианты массой более 0,30 карата; Китай , Россия , Украина , Таиланд , Бельгия , США , при этом в США производят только крупные высококачественные бриллианты, в Китае и Таиланде - мелкие, в России и Бельгии - средние и крупные. Подобная специализация сформировалась в результате различий в оплате труда огранщиков.

Доктор технических наук Дронова Нона Дмитриевна в 2001 году разработала методику оценки алмазного сырья, в которой при определении стоимости крупных кристаллов прогнозируется стоимость бриллиантов, которые могут из них получиться.

См. также

  • NV-центр - азото-замещённая вакансия в алмазе

Примечания

  1. БСЭ
  2. Phys. Rev. Lett. 70, 3764 (1993): Thermal conductivity of isotopically modified single crystal diamond
  3. Дронова Нона Дмитриевна. Изменение окраски алмазов при их обработке в бриллианты (системный подход и экспериментальные исследования) автореферат диссертации на соискание ученой степени кандидата геолого-минералогических наук. Специальность 04. 00. 20 -минералогия, кристаллография. Москва, 1991
  4. Юрий Шелементьев, Петр Писарев Мир бриллиантов (рус.) . Геммологический центр МГУ. - Чёрный алмаз называется карбонадо . Архивировано из первоисточника 23 августа 2011. Проверено 8 сентября 2010.
  5. Наука и техника, 14 октября 2002 года
  6. Журнальный зал | Нева, 2003 N9 | Евгений Трейвус - Голгофа геолога Попугаевой
  7. ленинская премия 1957 года была вручена другим геологам. Только в 1970 году Попугаева была награждена почётным дипломом и знаком «Первооткрыватель месторождения »
  8. Ученые рассекретили месторождение импактных алмазов в Сибири , Лента.ру (16 сентября 2012). Проверено 18 сентября 2012.
  9. «Крупный алмаз - из мелких»
  10. Б. Ф. Данилов «АЛМАЗЫ И ЛЮДИ»
  11. жизненная стратегия творческой личности
  12. Журнал «Университеты»
  13. Технология получения и очистки детонационных алмазов // Физика твёрдого тела, 2004, том 46, вып.4. - C. 586
  14. lenta.ru: «Новая технология позволит создавать бриллианты любого размера» по материалам «New Scientist»
  15. New n-Type Diamond Semiconductor Synthesized
  16. Ekimov, E. A.; V. A. Sidorov, E. D. Bauer, N. N. Mel"nik, N. J. Curro, J. D. Thompson, S. M. Stishov (2004). «Superconductivity in diamond ». Nature 428 (6982): 542-545. DOI :10.1038/nature02449 . ISSN 0028-0836 . Проверено 2010-02-22.
  17. Superconductivity in Polycrystalline Diamond Thin Films

Литература

  • Дронова Н. Д., Кузьмина И. Е. Характеристика и оценка алмазного сырья. - М .: МГГУ, 2004. - 74 с.
  • Епифанов В. И., Песина А. Я., Зыков Л. В. Технология обработки алмазов в бриллианты. - Учебное пособие для сред. ПТУ. - М .: Высшая школа, 1987.
  • Орлов Ю.Л. Минералогия алмаза. - М .: Наука, 1984.

Ссылки

Слово «алмаз» пришло из греческого языка. На русский оно переводится как « ». И действительно, чтобы повредить этот камень, нужно приложить нечеловеческие усилия. Он режет и царапает все известные нам минералы, при этом сам остается невредимым. Ему не вредит кислота. Однажды из любопытства был проведен эксперимент в кузнице: алмаз положили на наковальню и ударили по нему молотом. Железный почти раскололся надвое, а камень остался целым.

Алмаз горит красивым голубоватым цветом.

Из всех твердых тел алмаз обладает самой высокой теплопроводностью. Он устойчив к трению, даже об металл. Это самый упругий минерал, обладающий самым низким коэффициентом сжатия. Интересное свойство алмаза - люминесцировать и под воздействием искусственных лучей. Он светится всеми цветами радугами и интересно преломляет цвет. Этот камень будто напитывается солнечным цветом, а затем излучает его. Как известно, природный алмаз некрасив, истинную красоту ему придает огранка. Драгоценный камень из обработанного алмаза называется бриллиантом.

История опытов

В 17 веке в Англии по Бойль сумел сжечь алмаз, наведя на него солнечный луч через линзу. Однако во Франции опыт с прокаливанием алмазов в плавильном сосуде не дал никаких результатов. Французский ювелир, проводивший эксперимент, обнаружил лишь тонкий слой темного налета на камнях. В конце 17 века итальянские ученые Аверани и Тарджони при попытке сплавить два алмаза воедино смогли установить температуру, при которой горит алмаз - от 720 до 1000оС.

Алмаз не плавится из-за прочной структуры кристаллической решетки. Все попытки расплавить минерал заканчивались тем, что он сгорал.

Великий французский физик Антуан Лавуазье пошел дальше, решив поместить алмазы в герметичный сосуд из стекла и наполнив его кислородом. С помощью крупной линзы он нагрел камни, и они полностью сгорели. Исследовав состав воздушной среды, они выяснил, что помимо кислорода в ней присутствует диоксид углерода, представляющий собой соединение кислорода и углерода. Таким образом, был получен ответ: алмазы горят, но только при доступе кислорода, т.е. на открытом воздухе. Сгорая, алмаз превращается в углекислый газ. Вот почему в отличие от угля после сгорания алмаза не остается даже золы. Опыты ученых подтвердили еще одно свойство алмаза: при отсутствии кислорода алмаз не горит, но меняется его молекулярная структура. При температуре равной 2000оС всего в течение 15-30 минут можно получить графит.

То, что бриллианты горят, было доказано еще в XVII веке. Но, сегодня эта тема вспыхнула с новой силой, привлекая внимание не только ученых, но и обычных людей. «Непреодолимый» камень стал главным объектом исследования. Все потому, что с развитием техники повысилась потребность в алмазах. Читайте статью, и вы узнаете, как человечество узнало о воспламеняемости минерала, какую роль в его истории сыграл Лавуазье, и что нам дали эти эксперименты.

По волнам истории…

Пытливые умы во все времена выдвигали самые безумные теории. Неудивительно, что их интересовал бриллиант и его свойства. Камень не только один из самых прочных в мире, но и наиболее дорогостоящий. Определить, что алмаз горит, удалось лишь в XVII веке.

Заслуга принадлежит английскому физику Бойлю. Ему удалось сжечь алмаз через линзу, направив на него солнечный луч. Но, попытки повторить эксперимент французскими учеными провалилась. Они поместили камень в плавильный сосуд, и все чего добились – темный налет на кристаллах.

Вклад Антуана Лавуазье в изучение кристалла

Большой вклад в изучение минерала внес французский физик Антуан Лавуазье. Он доказал, что алмазы горят при наличии воздуха. Для своего эксперимента он:

  • поместил камень в стеклянный сосуд;
  • наполнил его кислородом;
  • закупорил.

Используя линзу, он нагрел алмазы, после чего они полностью сгорели слабо-голубым пламенем. Но в колбе не обнаружилось пепла. Исследовав воздушную среду в колбе, он выяснил, что в ней появился диоксид углерода.

Интересно, что Лавуазье своими экспериментами не старался доказать, что алмаз можно сжечь – это вышло случайно. Суть его экспериментов сводилась к опровержению флогистонной теории.

Проводя эксперименты по сжиганию веществ в герметичных капсулах, Лавуазье не мог привлечь к ним внимание «ученого сообщества». Чтобы исправить это, он заявил, что сожжет кусок алмаза. Такой ход доказал эффективность его работы и раскрыл миру одну из загадок бриллианта.

Открытие, перевернувшее мир

От того, загорится алмаз или нет, зависело все, что сейчас мы считаем привычным. Во-первых, благодаря эксперименту Лавуазье, была отвергнута флогистонная теория. Согласно ей, для реакции всегда необходимо два вещества. Одно — способное отдать, другое — способное принять. Ее заменил закон сохранения энергии: ничто не берется из ниоткуда, и не исчезает в никуда.

Благодаря этому закону, удалось выяснить, что, при сгорании, бриллиант превращается в углерод. И это дало нам, во-вторых: если из алмаза можно получить углерод, то должна существовать и обратная реакция.

Разрабатывая эту теорию, ученые выяснили, что алмаз можно синтезировать. Открытие имело широкий резонанс, ведь минерал используется во многих сферах жизнедеятельности. Возможность получать его искусственным путем – это неограниченный запас бесценного ресурса.

Шутка природы: хамелеоны среди драгоценных камней

Как мы сказали, алмазы начинают гореть при температуре свыше 720 градусов. Проводя эксперименты над некоторыми камнями, ученые заметили, что достигая отметки в 120-150 г, минерал меняет цвет. Это привело их к интересному открытию.

В природе существуют алмазы-хамелеоны. Обычно, они имеют оливковый оттенок. Но если их нагреть, цвет меняется на насыщенно-коричневый или на оранжево-желтый. Эффект недолговечен. Если продолжать воздействовать на камни, они сгорают.

Изменить свой цвет алмаз-хамелеон может и в темноте, если пробудет там длительное время. Ученые до сих пор не могут разгадать эту загадку. Проведя одновременно 39 тестов, они так и не смогли сойтись во мнении. Одни считают, что причина в примеси водорода, другие, – что камень приобретает люминесцентные свойства.

Расскажите об этом друзьям, сделав репост.

Все в этом мире не вечно. Практически все со временем превращается в прах. И к сожалению этого никто не может изменить. Все же есть в нашем мире вещи, которые, по мнению многих, являются неизменными. Сегодня хочу поговорить об одном таком объекте — алмазе. Алмаз по праву считается одним из самых твердых минералов в мире. И все же…

Известно ли Вам, что алмазы могут гореть? Данный занимательный феномен был обнаружен в результате экспериментов, которые проводились с этим минералом. В результате экспериментов выяснилось, что при высоких температурах (850-1000 градусов C) очень твердый минерал меняет свою структуру и превращается в чистейший углекислый газ, не оставляя никаких других веществ. В первый раз это было доказано в 1694 году, в тот момент, когда ученые из Италии К.А. Тарджони и Дж. Аверани попытались соединить в один большой алмаз несколько алмазов мелкой величины. Температура горения, при которой алмаз горит в в струе чистого кислорода чуточку меньше: 720-800 градусов С. Притом горит минерал красивым и голубым пламенем.

Опять же интересен, по моему тот факт, что из алмаза возможно произвести обыкновенный графит. Для этого требуется всего лишь только нагреть камень, при отсутствии кислорода до температуры в 2000 градусов С.

Все перечисленные факты были много раз доказаны учеными на практике, а впоследствии научно обоснованы.

Так, что женщины помните, что алмаз горит , бриллиант на вашем пальце от высокой температуры может превратиться в обычный графит. Помните об этом и будьте внимательны, не горячитесь.

Горение алмазов. Видео.

Интересные страницы нашего сайта:

Ненастье. Интересные факты о дожде

Подземная лодка. Секретные разработки

Ускоритель Богомолова. Возможно ли полностью уничтожить отдельно взятую страну?

Похожие публикации